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Bergman completeness of complete circular domains

by M. Jarnickl (Krakow) and P. PrLuc (Vechta)

Abstract. It is proved that any bounded complete circular domain of holomorphy with
continuous Minkowski functional is complete w.rt. the Bergman distance.

1. Introduction. We start with the basic notions we shall use:

DerFINITION. A domain D < C" is called complete circular il whenever
zeD, 21€C, |A <1 then £z €D.

We mention that any complete circular domain can be defined
by its Minkowski functional, ie. there exists h: C"—[0, ). h(i2)
= |l h(z) (4eC, zeC") such that D = {zeC": h(z) < 1!; sometimes we write
D =D, By [2], we know: D, is a domain of holomorphy iff h 1s a
plurisubhdrmonic function.

Observe that any pseudoconvex Reinhardt domain D containing the
origin is a complete circular domain D = D, with continuous Minkowski
functional h.

Let D be a domain in C”; then by ¢p(z’, z”) we denote the Carathéodory
pseudodistance between z’, z” ¢cf. [3]). Then the following is known [7]:

THEOREM. Any bounded pseudoconvex Reinhardt domain D < C", contain-
ing the origin, is cp-finitely compact, i.e., any cp-ball is a relatively compact
subset of D wur.t. the C'topology.

Remark. There 1s also the notion of cp-completeness in the sense of
metric spaces. But, so far, it is not known whether both notions coincide. It
is_clear that cp-finitely compact always implies cp-complete.

Hence, any such bounded pseudoconvex Reinhardt domain is the exist-
ence domain of a bounded holomorphic function. On the other hand. one
can characterize the bounded complete circular domains of holomorphy
which are H™-domains of holomorphy (cf. [8]).

THEOREM. Let D = D, be a pseudoconvex, bounded complete circular
domain in C". Then the following conditions are equivalent:
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(a) D is an H*-domain of holomorphy,
(b) \z€C" his not continuous at z) is pluripolar.

Hence, not every bounded complete circular domain D = D, of holo-
morphy is ¢)-finitely compact. Moreover, it is clear (cf. [2]) that continuity of
h is a necessary condition: this leads to the following question: is any
bounded. complete circular domain D = D, of holomorphy with continuous
Minkowski functional already c,-finitely compact?

In view of Hahn's inequality [4], necessary [or having a positive answer
is that every such D = D), is Bergman complete. Here we give a proof of this
result, which was found in February 1986 while the second author was a
guest at Jagiellonian University, Krakow.

2. Bergman completeness. Let D be a bounded domain in C" with its
Bergman kernel K,: D xD — C, holomorphic in the first, antiholomorphic
in the second variable. By

82 _ 1/2
Bp(z. X):= [Z Py log Ky (z, 2) XVX#] (zeD, xeC,

v i

we denote the Bergman metric in D and by

1
bp(z'. 2") = inf {{ Bp(7 (1), 7(1))dt:  piecewise C'-curve in D from z' to z"}
0
(z', 2" eD)

the Bergman distance in D.
We also recall the Skwarczynski distance for z', z” €D [9]:

- K Z’, Z,, 1/2
/(L) = {1 . IKpt ] ]

/ ’ ’ / ’ ’
CKplz', 2y KplZ', 2")

and observe: zp < ¢hy (cf. [5]), where ¢ is a constant.

Thus, in order to prove that D is by-complete is suffices to show that D
is 4p-complete.

More precisely, we use the following result [9]:

THEOREM. Let D be a bounded domain in C" and assume:

(1) the bounded holomorphic functions in D lie dense in the Hilbert space
L7 (D) of square-integrable holomorphic functions,

(1) im K (z, z) = oc whenever {€0D.

P
Pl

Then D is /p-complete.

Observe that, for a bounded complete circular domain D = D, with
continuous h, condition (1) is always fulfilled: take f,(z):= f(t-z) for ¢t = 1.
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What remains is the verification of condition (11). Here we use the
[ollowing deep result due to Ohsawa-Takegoshi [6]:

THeOREM. Let Q be a bounded pseudoconvex domain in C". y: Q@ 2R <
\— ) a plurisubharmonic function and H < C" a complex hyperplane. Then.

- . . . ~ . . - ~ 2 ’

for any holomorphic function f on Q~H satisfving | e V|f]7dV, | < %.
onll

there exists «a holomorphic  function F on Q with Fl,.p, = /[ uand

[e |FI?dV,<C | e Y|fI?dV,-1. where C = C(diamQ) = 1620n[1+
9] Qnli

(diam 2)2]% and dV, denotes the 2k-dimensional Lebesgue measure.
Now, we can formulate and prove our result:

THEOREM. Let D be a bounded complete circular domain of holomorphy
with its Minkowski functional h and assume h to be continuous. Then D is
sp-complete and hence Bergman complete.

Proof. We only have to verify that limKpy(z.z) = + . whenever
CecD. S

Therefore we claim: for any D = D, < C” there exists b > 0. depending
only on the diameter and the dimension, such that. for zeD.

(%) Kp(z, z) = b/[1=h?(2)]>.
In order to prove (x) we proceed by induction’

In the case n =1, we always have h(z [ | and. i zeD.

| l

Kplz.2) = nRI[1—h* ()}

Now we turn to the step (n—1) to n. Thus we assume D =D, c (",
Let z°e¢D =D, z°# 0: without loss of generality we may assume
2%=(0,0.....0). Define H:= {z=C": -, =0). Then there exists C, >0
only depending on the diameter of D such that every holomorphic function
on the bounded complete circular pseudoconvex domain DH in C"™'.
square-integrable w.r.t. the (2n— 2)-dimensional Lebesgue measure. extends to
F holomorphic on D and satisfying [|Fll, >, < Collfll 2,

Therefore we obtain

|F(z°)* 702

Z07 ‘0) = Ty -

K
o I

L2 ( oll /“l Z(Dr‘"b

Since [ eL?(D n H) was arbitrary, this inequality implies

[ - -
Kp(z°, 2% 2 5 Kpu(E°.2% (=2 =(Z°. 0)).
&
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and, by the induction hypothesis,

Kp(z°. 2% = b/[1 - 1% (2972
Hence (%) is verified.

Applying that h is a continuous function, we immediately conclude
limK,(z. z) = oc. whenever { €éD which proves our theorem.

-
[=aads

Remarks. We like to mention that this result is also formulated 1n [1],
Theorem 1, 11, but the arguments given there are incomplete.

We close this note by posing the following question:

Let h: C —[0.0oc) be a plurisubharmonic function with h(iz)
= |4 hi(z) (zeC", +eC) such that h vanishes on a dense subset of C" (cf. [8]).
We define D = Dy := iz €C™ hi(z) <1]. where h(z):= R(z)+1|zll. Hence D is
a pseudoconvex, complete circular domain with D = B, B the open Euclid-
ean unit ball in €”", and its Minkowski functional is far away from being
continuous. Therelore we ask:

Is D also Bergman complete?
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