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1. Introduction. Graphs having a certain property are often charac-
terized in terms of a type of configuration or subgraph which they
cannot have. For example, a graph is totally disconnected (or has chro-
matic number one) if it contains no lines; a graph is a forest (or has point-
-arboricity one) if and only if it contains no cyecles. Chartrand et al. [3]
defined a graph to have property P, for a positive integer » if it contains
no subgraph homeomorphic to the complete graph K, ,, or to the complete

bipartite graph
([ )
2 2

For the first four natural nimbers =, the graphs with property P, are
exactly the totally disconnected, acyclic (forests), outerplanar, and planar
graphs, respectively. This unification suggested the extension of many
results known to hold for one of the above four classes to one or more of
the remaining classes. Chartrand et al. were very successful in this
approach, but the methods of proof employed for values of »n less than
five generally did not extend to larger values.

The Chartrand et al. approach is somewhat topological in nature.
In [9], White and the author adopted a more graph-theoretic viewpoint.
They defined a graph to be k-degenerate for a non-negative integer & if
each induced subgraph has minimum degree at most %, and if =, denotes
the class of all k-degenerate graphs, then =, and =, are exactly the classes
of totally disconnected graphs and the forests, respectively, while the
classes m, and =z; properly contain all outerplanar graphs and planar
graphs, respectively. The advantage of this approach is that many well-
-known results for chromatic number and point-arboricity (corresponding
to the cases ¥ = 0 and k = 1, respectively) have natural extensions for
all larger values of k. However, some of the newer properties of chromatic
number and point-arboricity do not carry over in general.
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In this paper we take a different viewpoint. Instead of studying
graphs with property P, or k-degenerate graphs, we consider the class
A, of all k-acyclic graphs for a non-negative integer k. A, and A4, again
turn out to be exactly the classes of totally disconnected graphs and of
forests, respectively. The advantage of this approach is that many of
the newer, as well as the older, results for chromatic number and point-
-arboricity (corresponding to the cases ¥ = 0 and k¥ = 1, respectively)
have natural extensions for all larger values of %.

In Sections 2 and 3 we provide basic definitions and establish some
elementary properties for k-acyclic graphs. Section 4 presents the defini-
tion of the k-point-arboricity of a graph. These concepts generalize the
chromatic number (¥ = 0) and the point-arboricity (¥ = 1) of a graph.
The formula for the k-point-arboricity of the complete n-partite graphs
is developed in Section 5. Section 6 deals with critical graphs and, finally,
Section 7 provides bounds for the k-point-arboricity of a graph.

2. Preliminaries. Those definitions not provided here may be found
in [1] or [6]. The graphs under consideration are ordinary, that is,
finite undirected graphs without loops or multiple lines (Michigan graphs).
The point set and the line set of the graph @ are denoted by V(@) and
E (G), respectively. The degree d(v) of the point v of G is the number of
lines incident with it. The largest degree among the points of G is called
the maximum degree of G and is denoted by 4(G); while the smallest degree
among the points of G is called the minimum degree of G and is denoted
by 6(@).

A subgraph of a graph G consists of a subset of the point set of G
and a subset of the line set of G which together form a graph. The sub-
graph {8> induced by the subset S of V(@) has point set 8 and contains
all lines of K (@) incident with two points of 8. Two graphs are said to
be disjoint if they have no points in common.

The complete n-partite graph K(p,, psy ..., p,) has its point set V
partitioned into n subsets V,; with |V;| =p,;, ¢+ = 1,2,..., n, such that
two points w and v are adjacent if ueV, and veV;, h # j. The sets V,,
1 =1,2,...,n, are called the partite sets of K (p,, psy ..., P,). If p; =1,
t=1,2,...,n, then the graph is complete on n points and is denoted
by K,.

In [2], Beineke and Pippert defined k-walk in a graph as an alter-
nating sequence of complete graphs K, and K, ,,

0 1 1 n—1 n n
(1) Kk7Kk+17Kk’K?c+l7"'7Kk 9 k+19 k)

beginning and ending with complete graphs K, and such that the complete
graph K., contains the two complete graphs K. ' and K}, where K
# Kj (actually, Ki! and K. have k—1 points in common). This k-walk
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is called a k-cycle if n > 2, K}, = K}, and all other elements of sequence (1)
are distinct. The length of a k-cycle is the number of complete graphs
K, ., that the k-cycle contains. Since K, is a k-walk, the smallest ~-cycle
is K;,, and it has length 3. We show this by providing its sequence (1),
where Kj, = K, k> 1. Consider the complete graph K, ,, with the
point set {v;, Vg, ..., Vp_;, Uq,y Us, Us}. Let
K = ({v1,0g, ..., Vk-1, s}
Kipn = (V(Ep)U{ug}>, K =Kp,—uy,
Ky, = (V(Kp)o{ug}y, K = Kjpy—u,,
Ky = <V(ER)u{u}d, Ki=K,,—u; =K.
Thus, for each positive integer %, K, , is an example of a k-cycle.
PRrOPOSITION 1. For any positive integer k, the complete (k -+1)-partite
graph K(py, Py -y Dryr)y Where py =Py = ... =pp_y =1 and p; = py,
= 2, 18 a k-cycle of length 4.

3. k-acyclic graphs. Let k¥ be a non-negative integer. A graph @
is said to be k-acyclic if it has no k-cyecles. (For & = 0, G has no lines.)
We use the symbol 4, to denote the class of all k-acyclic graphs. It is
easy to see that the complete graph K, , is (k-1)-acyclic, but not %-
-acyclic. Hence 4, is a proper subclass of A, ,, for each non-negative
integer k.

A totally disconnected graph is one with no lines. Thus a graph is
totally disconnected if and only if it is 0-acyclic. A forest is a graph without
cycles, and these are exactly the l-acyclic graphs (1-forests).

‘We now make some elementary observations about k-acyelic graphs.

ProrosITION 2. (i) If G is in A, then G i8 in A, for each n > k.

(ii) For each graph G, there is a minimum non-negative integer k
such that G is in A,.

(ili) A graph @ is in A, if and only if each component of G is in A,.

(iv) If @ is in A, then each subgraph of G is in Ay.

(v) A graph G is in A, if and only if each of its blocks is in A;.

4. k-point-arboricity of a graph. For any non-negative integer %,
the k-point-arboricity a,(G@) of the graph G is the minimum number of
sets into which the point set V(@) can be partitioned so that each set
induces a k-acyclic subgraph of . If P = {V,, V,, ..., V,} is a partition
of V(@) such that each set V;, i =1;2,...,n, induces a k-acyclic sub-
graph of @G, then P is called a k-acyclic partition of G. The k-point-arbo-
ricity is then the minimum number of sets required in any k-acyclic
partition of V(G).

The O-point-arboricity a,(@) is the -extensively studied chromatic
number of G, while the 1-point-arboricity a,(@) is the more recently in-
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vestigated point-arboricity of G. For values of k > 2, the parameters a, (&)
have not been considered as a topic of research. Each of the parameters
a,(G) may be thought of as a coloring number, since it provides the mini-
mum number of colors in any coloring of the points of G so that each
color class induces a k-acyclic subgraph of G.

It is helpful, in determining a,(G), to note that we may restrict
ourselves to connected graphs (see Proposition 2 (iii)).

PROPOSITION 3. The value of a,(G) is the maximum of the values a,(C;)
for the components C; of G.

Since a,(G) > 1 for each graph ¢ and each non-negative integer k,
and a,(@) < a,(G) for each n > m, we make the following elementary
observation:

PRrROPOSITION 4. If G is a k-acyclic graph and m > k, then a,(G) = 1.

S. k-point-arboericity of the complete n-partite graphs. We now con-
gider the k-point-arboricity of graphs in more detail. As one would
expect, for most graphs G and for small values of %, the k-point-arboricity
a,(@) is difficult to determine. However, for one important class of graphs,
the complete n-partite graphs, the k-point-arboricity is easily calculated.
For k = 0, the chromatic number or 0-point-arboricity of the complete
n-partite graph is =». Chartrand et al. [5] exhibited a formula for
al(K (P1y P2y +- -y p,,)). We can now provide a formula for the k-point-
-arboricity, k> 2, of the complete n-partite graphs. For the remainder
of this section, whenever we consider the complete n-partite graph
K (pyy P2y ---5 Prn), We shall assume that the numbers p,, p,, ..., p, satisfy
the inequality p, <p;<...<p,. We begin by making the following
observations:

PROPOSITION 5. Let k > 2 and let G denote the complete n-partite graph

K (pyy P2y -9 Pn)-
(1) If n< k, then a;(G) = 1.
(ii) If » = k41, then
\ 1 9 =1
wiey = B
2 ’lf pk> 1.
(iii) If k+2 < n < 2k, then ai(Q) = 2.
(iv) If n = 2k+1, then

2 9 =1
a (@) = .ka ’
3 if pp>1.
(v) If n =2k +2, then
2 i ar. — 1
(@) = :fp-k ’
3  if pu>1.

(vi) If 2k+4+3 < n < 3k, then a,(G) = 3.
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For any real number r, we use the symbols [r] and {r} to denote the
greatest integer not exceeding r and the least integer not less than r,
respectively.

THEOREM 1. Let k> 2, let n>2k+1, and let h be an 'mtegew such
that 0 < h < n. Let G denote the complete n-partite graph K (py, psy ..., Dy)s
where p; =1 if i< h, and p,>1 if > h. Then

o )

Proof. We begin the proof of this theorem by considering the special
case where G is the complete n-partite graph K (p,, Pz, ..., p,) With p; =1
if i< h and p; = 2 if ¢ > h. We prove that (2) holds in thls case and then
use this result to establish the general case. The proof for k¥ = 2 needs
to be handled in a slightly different manner, but it is very similar, and
s0 we omit it here.

Let V;, ¢ =1,2,...,n, be the partite sets of @ as described in the
definition of the complete n-partite graph. In this case |V, =1 if i< h
and (V,| =2 if ¢> h.

We note that, for any » > 2k +1, if h > kn/(k+1), then

I N el

and so we must show that a,(G) = {n/(k+1)}. A k-acyclic partition of
V(@) into {n/(k+1)} sets may be obtained by grouping the partite sets
of @ into groups of k41, with % of them coming from the first » partite
sets. Thus a,(G) < {n/(k+1)}. For any partition of V (@), if a set of the
partition contains points from more than k41 of the partite sets of @,
then it induces a subgraph of G which contains a %k-cycle. Thus a,(G)
= {n/(k+1)}.

We now use induction on n to prove formula (2). It follows from
Proposition 5 (iv), (v) and (vi) that formula (2) holds for n = 2k +1,
2k +2, and 2k+3. Thus we assume that formula (2) holds for any m,
2k +1 < m < m, and show that it also is valid for n. We consider the
following cases:

1) A< k(n—Fk)/(k+1);

(2) k(n—k)/(k+1) < h < kn|(k+1); and

(3) kn/(k+1) < h.

Case 3 was considered in the prev1ous section, so we now treat
cases 1 and 2.

Case 1. Assume that h < k(n—Fk)/(k+1). Then

{n—k}g{(n—k)~'[h/k] |
k+1 k

(2) a,(G) = max ({
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Take the complete (n—k)-partite graph H = K(p,, Psy ...y Pn_i)-
‘The graph H is a subgraph of the graph G with exactly % fewer partite
sets than @ and each of the % partite sets, deleted from G to form H,
contains exactly two points. Thus a,(H) < a;(G) < a;(H) +1. The induc-
tion hypothesis implies that

—k)—[h]k
o) - | 2B / .
We need to show that
—[h]k
® R

so we assume that a,(G) = a;(H) =t. Let Uy, i = 1,2,...,t be any
k-acyclic partition of V (@) into ¢ sets. If each of thesets U,, ¢ =1,2,...,1,
contains at most k+2 points, then (k+42)t>2n—h, the number of
points in @. But since '

! = o) ={(n_k)k_[h/k]}’
we have the inequality
(k+2){(n—k)k—[h/k]}>2n_h,’

and solving for k& we find that » > kn/(k +1). Since, in this case, we assumed
that h < k(n—k)/(k+1), we have a contradiction. Thus at least one of
‘the sets U;, ¢ =1,2,...,1, contains at least k¥ +3 points, say U,. Then
it follows from Proposition 1 that U, can only contain points from %
-of the partite sets of G. From this k-acyclic partition we will form a new
k-acyclic partition W,, ¢ =1,2,...,t, of V(@) with ¢ sets such that

Wy =Vuger1VVpppov... 0¥V, =X.

If a point from one of the sets V,, + =1,2,..., h, is in U,, then
we exchange it with a point from a set V;, j = h+1, h+2, ..., n, where
V;nU, =@. We have then constructed a new k-acyclic partition Uj,
i=12,...,t of V(@) with ¢t sets such that U, contains only points
of the sets V;, j =h+1,h+2,...,n. In view of the symmetry of the
sets V;, j =h+1,h+2,...,n, we may assume that U, contains only
points of X. We now add all the remaining points of X to U, to get a new
k-acyclic partition W;, ¢ =1,2,...,t, of V(@) with ¢t sets such that
W, =2X. Thus W,, i =2,3,...,t, is a k-acyclic partition of V (H) with
1—1 sets. This contradicts the fact that a,(H) = t. Therefore, we must
have (3).

Case 2. Assume that k(n —k)/(k+1) < h < kn[(k+1). Then

(el == e S <
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The induction hypothesis implies that a,(H) = {(n —k)/(k+1)}. As
in Case 1, a;(H) < & (@) < a;(H)+1, and so we have

{ n }<{ —[h/k][ ]n-i—l} [n— k}—l—l.

k+1 k ]\lk-l—l "\ %+1

Thus we must show that a,(@) = {(n—[h/k])/k} = {(n+1)/(k+1)},
and so we assume that a,(G)= a,(H) = {(n—k)/(k+1)} =t. Let U,,
+=1,2,...,% be any k-acyclic partition of V(@) into ¢ sets. If each of
the sets U;, ¢ =1,2,...,%, contains at most k42 points, then (k+2)¢
> 2n —h, the number of points in @. But since ¢ = {(n —k)/(k +1)}, we
have the inequality

n—k
k41

(k+2){ }>2n—h,

and solving for » we find that h > kn/(k +1). Since in this case we assumed
that h < kn/(k+1), we have a contradiction. Thus at least one of the
sets U;, 1 =1,2,...,t, contains at least k+3 points, say U,. Then,
a8 in the proof of Case 1, there is a k-acyclic partition W;, ¢ = 1,2, ..., ¢,
of V(@) into t sets, where W, = X. Thus W,, i =2, 3, ..., 1, is a k-acyclic
partition of V(H) into ¢ —1 sets. This contradicts the fact that a,(H) = t.
Therefore we must have (3).

We now return to the general case, that is, where p; can have values
other than 1 and 2. Let G = K(p,, psy ..., P,), Where p, < p3 < ... < P,.
Let h be the maximum j such that p; =1 or let » =0 if p, > 1. We
consider two cases:

(4) h > kn/(k+1), and

(8) h < kn/(k+1).

Case 4. Assume that h = kn[(k +1). We can find a k-acyclic partition
of V(@) into {n/(k+1)} sets by grouping the partite sets of G into groups
of k +1, with k of them coming from the first & sets. Thus a, (@) < {n/(k +1)}.
Since the complete n-partite graph H = K(qy, ¢a, ...y ), Where ¢; =1
if i< h and ¢; = 2 if ¢ > h, is a subgraph of G, and a,(H) = {n/(k+1)},
we have a,,(G) = a(H) = {fn,/(k +1)}

Case 5. "Assume that b’ < lm/(k +1) Then we can obtain & k- -acy clie
partition of V(@) into {(n — [h/k])/k} sets as follows. For¢ =1, 2, ..., [h/k],
let

Ui = Vice1V Vg2V - WV 0 Vi,

Then these |A/k] sets U;, ¢ = 1,2,..., [h/k], have used up exacth-
(k+1)[h/k] of the partite sets of G. The remaining n — (k +1) [h/k] partite
sets can be grouped into {(n—(k-+1)[k/k])/k} sets each containing at
most k of the remaining partite sets of G. Thus we have a k-acyclic parti-
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tion of V(@) into at most

[h]+{n—(k+1>[h/k]} _ {n—[h/k][

& k k|

sets. Thus a,(@) < {(n — [h/k])/k}. Since the complete n-partite graph H
defined in Case 4 is a subgraph of @, and a,(H) = {(n —[h/k])[k}, we
have

—[hlk
() > ay(H) = {%”}

This completes the proof of Theorem 1.

We now have the following corollary providing the k-point-arboricity
of the complete graphs:

COROLLARY 1 (a). For the complete graph K, with p points and for

every mon-negative tnleger k,
¥4
a(Ky) = {k+l}.

Since every graph with p points can be considered as a subgraph
of K,, we obtain the following upper bound for the k-point-arboricity
of a graph:

COROLLARY 1 (b). For every graph G with p points and for every mon-
-negative inileger k,

a,(G) < {70—1_:_—1} .

6. Critical graphs. In general, the bound given in Corollary 1 (b) is
not particularly good. We shall improve this bound in Section 7 using
a result from this section.

A graph @ is said to be n-critical with respect to k-point-arboricity (or
with respect to a;) if a; (@) = n and a;(H) < a, (@) for every proper sub-
.graph H of @. Graphs which are critical with respect to a, (chromatic
number) have been studied extensively; while in [4], [7], and [8], graphs
critical with respect to a, (point-arboricity) were considered.

It is well known that any graph having chromatic number » contains
an n-critical subgraph. Chartrand and Kronk [4] have established the
analogue for point-arboricity. In the following proposition, we generalize
these results for all values of k:

PROPOSITION 6. If G is a graph with a,(Q) = n, then G contains a sub-
graph that is n-critical with respect to a.

Any graph G that is n-critical with respect to chromatic number
has the minimum degree &(G)>n-—1. In [4], Chartrand and Kronk
showed that every graph @ which is n-critical with respect to point-
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-arboricity satisfies 6(@) > 2(n —1). We now provide an analogue for
all non-negative integers k.

THEOREM 2. If G is a graph which is n-critical with respect to a;, then
8(@) = (k+1)(n—-1).

Proof. There are no non-trivial graphs that are 1-critical with respect
to a;, and so we assume that n > 2. Let G be a graph which is n-critical
with respect to a, and assume that there is a point v of G with d(v)
< (k+1)(n» —1). Since @ is n-critical with respect to a,, a;(G —v) = n —1.
Thus we can find a k-acyclic partition U,, ¢ = 1,2,...,n —1, of V(G —)
into n —1 sets. Since d(v) < (k+1)(n—1), at least one of these sets, say
U,, contains at most k¥ points adjacent to ». Then U,u {v} induces a k-
-acyclic subgraph of @, and so U,u{v}, U,, ..., U,_, is a k-acyclic parti-
tion of G into n —1 sets. This contradicts our assumption that a,(G) = n,
and so 6(G) = (k+1)(n—1).

Any graph with at most k 41 points is k-acyclic. Thus, if @ is a graph
with a,(G@) = n, then G must have at least (¥+1)(n —1)+1 points. This
implies that any graph G which is n-critical with respect to @, must also
have at least (k-+1)(n—1)+1 points. It is not difficult to show that
the unique graph G with a,(G) =n and with (k+1)(n —1)-+1 points
is G = Ky iipn-1)+1-

7. Bounds for the k-point-arboricity. As mentioned in Section 6, the
upper bound for the k-point-arboricity given in Corollary 1 (b) is not
particularly good. We now present an upper bound that is generally
sharper, together with a lower bound. For a graph G and a non-negative
integer k, let M, (@) denote the maximum number of points of G which
induce a k-acyclic subgraph of G. The number M,(G) has been called the
point-independence number of G.

PROPOSITION 7. Let G be a graph with p points and let k be a non-
-negative integer. Then

r A
@ g < ate < {2

The proof of this result is omitted, since similar proofs can be found
in [3].

In order to provide additional upper bounds for the k-point-arboricity
of a graph, some further definitions are necessary. A set S of lines of @
is called a cutset of G if G — 8, the subgraph of G obtained by removing
the lines of 8, has more components than G. If |§] = n, then § is called
an n-cutset. The minimum number of lines in any cutset of the connected
graph @ is called the line-connectivity of G, and is denoted by A1(@). In [10],
Matula defined the strength o(G) of the graph G as follows:

(@) = max{A(H): H is a subgraph of G}.
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He then showed that a,(G) < 1+ ¢(@). The author [8] extended this
result to point-arboricity a,(G) <1+ [0(G)/2].

These two results are now generalized to k-point-arboricity. To do
this, the following proposition is required:

PROPOSITION 8. Let S be an n-cutset of the graph G and let G, and G,
be disjoint induced subgraphs of G—8 such that G = (V(G,)u TV (G,))>.
Then

(5) a, (@) < max (a’k(G1)7 a;(Gg), 1+ [kil ])

Proof. Let U;, i« =1,2,..., a,(G,), be a k-acyclic partition of @,
ordered so that each of U,, U,,..., U, is incident with at least %k +1
lines of 8, and each of Uy, Uy, ...y Ugyg,) is incident with at most &
lines of 8. Let W, ¢ =1,2,..., a,(G@;), be a k-acyclic coloring of G,
such that the points of W, are colored with the color ;. We now color
the points of @, in order to produce a k-acyclic coloring of G. For each
J, 1<j < a,(G,), let the color assigned to U; be the minimum positive
integer different from that color assigned to U;, 1 < ¢ < j, and different
from the color s if there are at least k +1 lines of S joining points of U; to
points of W,.

Since there are at most [n/(k+1)]—t+1 sets of at least ¥ +1 lines
of S joining the set U, to a set W, the choice of ‘a color for U; need only
be from j+[n/(k+1)]—t+1 different colors. Hence the maximum num-
ber of colors required for the sets U,, U,, ..., U, is at most 1 + [n/(k+1)].
Furthermore, the color ¢ associated with the set U;, t <j < ax(G,),
satisfies the inequality ¢ < j. Thus the maximum number of colors required
for G, in this k-acyclic coloring of G is at most

max (a,,(Gl), 1+ [k_il]) .

Therefore, this k-acyclic coloring of G requires at most

max (ak(Gﬂ, a;(@s), 1+ [k,)—/:—l ])

colors, and inequality (5) is established.

We note that inequality (5) must produce an equality unless the
maximum on the right-hand side is attained by 1+ [n/(k+1)]. This is
the case we now study. The following theorem provides an inequality
relating the k-point-arboricity and the line-connectivity of critical graphs:

THEOREM 3. Let G be a graph which is a,(@)-critical with respect to
k-point-arboricity. Then
l(G)]

(6) a(G) <1+ [m
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Proof. Let S be a A(@)-cutset of G and let G, and G, be the compo-
nents of G — 8. It follows from Proposition 8 that

0,(@) < max (%(Gl), a(6), 1+ [—’1-@])

kE+1

Since @ is critical with respect to a,, we have a,(@,) < a,(@), and
a,(G,) < a; (@), and thus inequality (6) is established.

Theorem 2 now follows as a corollary to Theorem 3, since A(@) < 4(G).

Clearly, (6) does not hold for arbitrary graphs, since two complete:
graphs K 1yn—1)+1 joined by a line have k-point-arboricity =, but line-
-connectivity one. We now provide an upper bound on the k-point-ar-
boricity in terms of the strength of the graph.

THEOREM 4. For any graph G,

(@)
k+1]’

Proof. Assume that G has the k-point-arboricity a,(G). Proposi-
tion 6 may be applied to find a subgraph H of @ which is a,(G)-critical
with respect to a,. Then Theorem 3 implies that a,(H) < 14 [A(H)/(k+1)].
Since A(H) < o(@), inequality (7) is proved.

(7 ak(G)<1+[

8. k-point-arboricity of plamar graphs. We now consider the 2-point-
-arboricity and the 3-point-arboricity of planar graphs.
PROPOSITION 9. If G is a planar graph, then

8 - ay(6) < 2,

and this inequality is best possible.

Since any subgraph of a planar graph is a planar graph, and any
planar graph has a point of degree at most 5, it follows that the strength
of any planar graph is at most 5. Now inequality (8) follows from Theorem 4.

In order to show that inequality (8) is best possible, we shall make.
use of the class of graphs called wheels. For any integer n > 4, the wheel
W, is a 1-cycle of length n —1 and a point » not on the cycle such that
each point of the cycle is adjacent to the point v. The graph K, is the
wheel W,. Then, for each integer n > 4, W, is a planar graph which is
a 2-cycle. Thus a,(W,) = 2.

Likewise, Theorem 4 implies that the 3-point-arboricity of a planar
graph is at most 2. However, the following proposition improves this

bound:

PrOPORITION 10. If G i3 a planar graph, then ays(G@) = 1.

In order to prove this result, we need only to show that a planar
graph cannot contain a 3-cycle as a subgraph.
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Let G be any planar graph and assume that the 3-cycle H is a sub-
graph of @. From the definition of 3-cycles it follows that if H has order p,
then H contains a maximal 3-degenerate graph of order p as a proper
subgraph (see [9]). Since any maximal 3-degenerate graph of order p
has 3p — 6 lines, H must have at least 3p — 5 lines. But this contradicts
the fact that a planar graph of order p contains at most 3p —6 lines.
Thus @ does not have any 3-cycles as subgraphs, and so a,;(G) = 1.
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