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Difference methods for non-linear partial differential
equations of the first order
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Abstract. The paper deais with the difference methods for the Cauchy problem

2.(x, y) = f(x, y, 2(x, y), z,(x, y)),

0 O 1) = w(y).

z(x
The corresponding one-step difference method is of the form
Ao WD = (xD, y AWl Twéd] AwsD | b, k),
w0 — w(},(j)),

(i)

where 4, and A4 are dilference operators.
We give sufficient conditions for the convergence of the sequence iu,) of solutions of (ii) to

a solution # of (i). We also give an error estimate of the method, in terms of a power of the step
h, indicating the order of the method.

1. Introduction. We consider the initial problem for the first order
partial differential equation

O z(x, y) = f(x, ¥, z(x, ), z,(x, y)) for (x, y)eE,
z(x9, y) = w(y) for yeE,,

where y = (yy, ..., y») and z,(x, y) = (z,,(x, y), ..., z, _(x, y)). The sets E and
E, are defined by
(2) E= {(X, y) x(® SXE x(°’+a, |}’:—‘.V£°)| < b,—M,(x—x‘o’),

t=1,..,n}
where q, b, >0, aM, <b,, 1=1, ..., n, and

3) Eo = ly: (x, y)eE}.
We are interested in establishing a method of approximating a solution

of the Cauchy problem (1) by solutions of an associated difference equation
and in estimating the difference between these solutions.
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For h, k., >0, t=1,...,n we define x? =xO+jn i=0,1,..., n,,
where noh =a and

4 yW=yO4lk, I=—-n, —n+1,...,-1,01,...,n,

t=1....,n. where n k, =b,.

Let j = (jy, ..., j.) and y@ = (", ..., y¥"). We define
I =G, (x?, yMeE;,

(5) =G, el i=m (i+1,)el, i=0,1,..., n,—1,
r=royrmy ... orm ",

and

(6) E* = {(xP, y9): (i, e, To=1j: (0, j)el}.

Suppose that f is a function of the variables (x, v, p, ¢}, ¢ =(¢q, --., qa)
continuous on E xR'*" and that the derivatives f,, f, =(f;,, .-, fp) exist
and are continuous on E x R'*". Assume that for each i, 1 <i < n, we have

(N fu(x. 3. pr@ <O on ExR'*"
or fo.(x,y,p,q9=20 on E xR'*",

AN

Let

Ii=liell,...,n): f(x,y,p,9) <0 on ExR'""]

and I, = {1, ..., n}\I,. For a function u: E* — R we write u = y(x  y¥),
(i, NeI'. We define the difference operators 4,, 4,, ..., 4, as follows:

Ao u(:’.j) — 1 [u(i+ 1) _ uti.j»]
h ’

. 1 . Grf1nmnp— 1rd— 10J cerdip)
Ayl = — [ — B T e e dnl for tel,,
T

U Gttt 1 o
P Jpeeedp—gadet Lo veredp)
Ar u(l.J) S [ll 71 t—1Je t+1 n _u(l.ﬁ] for te Iz-

t

Put Au) = (4, u%?, ..., 4,u%?). Suppose that there exists a solution z
of (1). )
Suppose that problem (1) is solved numerically by the difference method
Aou(i-j) = f(x(l'), y(j), u(i-.i)’ Au"'""), (i, peT,

8)

u®? =" for jel,.
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We define the discretization error 5 by

and e(h, ko) = max ||, where k, = max k.
G.jel 1<r<n
A simple sufficient condition for the convergence of the method (8) to a

solution of (1} is given by the following theorem.

TueoreMm (T). Suppose that

(i) feC(ExR'™™ R), the derivatives f,, f, exist and f,, Ju €
C(ExR!'" R),i=1,....n

(i) for each i. 1 <i < n, f, satisfies (7) and there exists a constant L > 0
such that {f,(x, y, p, @l <L on ExR'™",

(il) k, < hM, for t=1,...,n and for (x,y, p, € E xR'*" we have

1+h[f,,(x_, NN B Iﬁ,,(’c Y5 Ps q)l]

= l

(iv) Z and u are solutions of (1) and (8), respectively.
Under these assumptions,

s o P ’ I: k i i
|21|,J)_,7(l.1)l < F"—(—IL—O)(QU"'- 1), (i,j)e r

and

lim |79 -3¢0 =0, (i, j)el
h.ko -0

This theorem is an immediate consequence of [1], [2]. It was shown in
[1] that arbitrary high accuracy can be achieved by method (8) by choosing
the step h sufficiently small. The discretization error is roughly proportional
to h, which means that the accuracy that can be achieved over a given
domain E is proportional to h. It 1s shown in this paper that there are one-
step methods for (1) which are much more effective than Euler’s method (8) in
the sense that the accuracy attainable with the step h (with respect to x) is
proportional to A* with a > 1.

We prove the convergence of a general one-step difference method for
(1). We also give an error estimate of the method. expressed in terms of a
power of the step h, indicating the order of the method.

The basic tool in our investigations are theorems on difference in-
equalities.

We give some examples of the one-step difference methods of second
order (based on Taylor’s expansion or patterned on methods of Runge-
Kutta type) and an example of the one-step difference method of third order
(based on Taylor’s expansion).
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2. Difference inequalities. Suppose that H < [0, h'®] x [0, k'®] is a given
set of parameters (¢, 1), 1= (11, ..., n,), where h'®? >0, k'@ = (K2, ..., k'),
kK9 >0 for t=1,...,n and [0, k“] is an interval in R%, R, = [0, + o).
We assume that E dnd Eo are given by (2) and (3) For j =(j,, ..., jo) We
denote y9 = (y¥", ..., yY"), where y®, 1 =1, ..., n, are defined by (4). Let

XD = x@ 4 p o he(0, h‘o’], i=0,1,....#7

xPrD = x4 g,
where (h;, k) =~(h,-, ky,....,k)eH for i =0,1,..., A Let h=(hg, hy, ..., hy.
Suppose that I', I'y, I'. E* are sets defined in Section 1 with x given by (9)
and with (h;, k)eH. For an integer r > 0 we write n* =(2r+1)" and I(r) =

=r,=r+1, ..., =1,0,1,...,r!. Let N(r) = s =(s;,...,5,): s,el(r) for 1
=1,...,n and Q=ExRxR"xR" Let p be a matrix

9)

P= [ps]s=(s1....,s,,).
seN(n)
Denote by C(X, Y) the set of all continuous functions defined in X and
taking values in Y; X, Y are arbitrary metric spaces.

Suppose that for each pair (&, n)e H there is given a function
&(-, & n): Q2 =R of the variables (x, y, z, p, q), where y =¥y, ..., Vi), q
= (qls R qn)’ D= [ps]seN(r)' WC write P = (X, y,2,DP,4, é, rf)’ WhCI'C
(x,y,2,p,9€RQ, (&, meH. If j=(y, .., ja)y J =015 .5 Jn) then j+j' =
(il +.”l! v "jn+j;)-

For a function z: E — R we define

AZ(X, y): z (ISZ(X, y1+slkla"°vyn+snkn)’
S=(S1s.eSp)
selN(r)
Btz(x’ Y)= Z bgr)Z(x, yl+sl kl!"'9 yn+Snkn)s ‘r=1,...,n,
S=($),e00s Sp)
seN(r)

where a,, b®eR for se N(r), t =1, ..., n. Suppose that I, I, < {1, ..., n)
are sets of integers such that I, ul,=1!1,...,n} and I,nI,=@. (In
particular, I, =@ or I, =@ are admitted.) We introduce the difference
operators A4,, 4,,...,4,. Let z: E* >R, (h,kyeH, rk, <hM, i=
0,1,....i4, t=1,....,n. We deline

L 1 .
Aoz(x"’, y(,l)) — _h_[‘._,(x(n_*_hl_’ ym) Az (n m)]

. 1 . .
4,2(x, y‘”)=k—[Az(x"’,yw) B.(x®, y)] for tely,

1 4

A, z2(xP, yI) = — [B 2(x, YN — Az (X y)]  for tel,.
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Let 4z(x¥, y9) = (4, z(x?, yV), ..., 4,2(x?, y)). Denote by [z(x, y)] the
matrix defined by
EZ(X, )’)]] = [Z(X, yl +sl kl’ AR ] yn+snkn)]s=(51.---.s,.)_

seN(r)

We consider the following difference method for the Cauchy problem
(1):

(10) AoW“'j) = ¢(x(”a }’U), AW“J); l]-_w(i'j)]]s Aw(i'ﬁs hi’ k) for (l, j) Er,
w) =¥ for jerl,.

AssumpTioN H,. Suppose that

(ao) for each (¢, n)eH we have rp, < M, ¢, t=1,...,n

(bo) if (£, n)eH, then @(-, ¢, n)eC(L2, R),

(co) the  derivatives (-, &, m),  D,(-, & =[P, (", & Dsenin»
¢, (,&mt=1,..,n (¢, n)e H, exist and are continuous on £2,

(do) for Pe Q2 xH and for se N(r) we have

1 1
as[1+¢¢z(m+c Y —&, (P-¢Y —cbq,(P)]+

rely 't tely ‘it

rifo, ;-5 Lare, i+ T Lo, >0

tely ‘It tel; it

Remark 1. Suppose that for each 1, 1<7t<n the derivative
@, (.S n) satisfies one of the following conditions:

?, (PV<0 for PeQxH or (Dq'r(P);O for PeQ xH.

Suppose that I, = {reil,...,n}: &, (P)<0 for PeQxH}, I,=
1, ...,n)\I, and a,, b >0 for seN(r), 1 =1,...,n If

1+{[¢2(P)— y -l—|¢,,r(P)|]> 0 and &,(P)>0, seN(),

r=1"t

for PeQ x H, then condition (d,) of Assumption H, is satisfied.

We are now able to prove the following theorem on difference in-
equalities.

THEOREM 1. Suppose that

(iy) Assumption Hg is satisfied,

(1y) (h;, k)eH for i =0,1, ..., A,

(itiy) u and v are functions defined on E* and

(11) u® <% for jerl,,
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(iv,) the difference inequalities
Ao u(,"_,') < ¢(x(i)’ _VU), Au“'j’, [u(i.j)]], Au(i..i)’ hi’ k)’
on(i.j) > ¢(x(i), y(j), Av(l'.j)’ [[v(i,j):[l’ AU“'D, h‘_, k)

are satisfied for (i, jleT.
Under these assumptions

(13) whd < plid) on E*.

(12)

Proof. Suppose that assertion (13) is false. Then the set
Z= -{ie 0,1,...,a+1}: 4% > %) for some j = (j,, ...,j,,)}

is non-empty. Defining { = minZ, it is clear from (11) that / > 0 and that
there exists ¢ =(cy, ..., ¢,) such that

ubd < v for 0<i<<I-1, (i, j)eT,
and

(14) uh9 > o (1 el

Defining the function W' =y — @& (i, j)e I, we have (I-1, c)e I’ and

ﬁ(l.c) - AW(I-— l.t)+h’_ . [AO u(l— 1,0 —AO D(l— l.ti].

By the hypothesis of our theorem we obtain for a point P = (x¢~ 1, y©
Z, D, 4, h_,, k)€ x H the inequalities

W(l.c) S AV‘\.’“—LC)-{—
+hy [, y9, 4um O [ulm O U by, k)
—@(x!7 1, Y9, Apt= 1O, [ol= 1O A1 by, k)]
= AWV (@ (P) [ AUt~ 10 — At~ 1]+

+ z ¢ps(i5) [u(l—l,c+s)_v(l—l,c+s)]+

seN(r)

.+ Z ¢qt(ﬁ) [Atu(l—l,c)_Atv(l—l.c)]}
1

T=

= Aﬁll—l.r)_"_h;_l {¢z(ﬁ)Aw~(l—1.c)+ Z ¢ps(p)wﬂ—l,c+s)+
seN(r)

1 ~
+ Z z_(pq‘(P) [AW“—L‘)—B,.W“_I")]-}-
tely "

1
+Z;(‘

el 7t

@, (P)[B, W'~ 19— AU~ 107}
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= Z W= Le+s) {a,[1+h,_, diz(ﬁ)-;-h,_1 Z ki‘pef(ﬁ)_
seN(r) vy ke

1 . . _
by ¥ k—di,,t(P)]M,_, [qs,,s(p)- Y L o, (P)+

tely ™t tely kt

1 -
+ Y - bO D, (P)]}.
tely Tt :

These estimates together with condition (d,) of Assumption H, lead to-
the inequality W < 0, which contradicts (14). Hence the set Z is empty and
(13) follows.

Remark 2. It is easy to see that Theorem 1 is true in the unbounded
zone

Ee!{(x®, y): xt*+0 = x@ 4 p i=0,1,..., 7,

y(j) =(y(ljl)! MR 4 y(ﬂi"))’ yin = lkt’ l=0! ill izi MR | ‘r = 1’ “trs n:'

We can omit the assumption k,r < M, t=1,...,n,i=0,1,..., 7, in
this case.

3. The convergence of the difference method. We introduce

AssuMmpTiON H,. Suppose that

(a,) for seN(r), t=1,...,n we have

Y ag=1, Y bP=1, t=1,...,n,
seN(r) seN(r)

(b,) there exist constants L* L, seN(r), such that |®,(P)| < L* for
PeQ xH and |®, (P) < L, for PeQxH, seN(r).

We define
L=L*+ Y L,
) seN(r)
and
S®(x, r)={y: (x, y1+5, Ky ..., Vot S k)€ E forse N(r)}.
If u is a function of class C! on E, then
u(x+¢, y)—Au(x, y)
¥(x,y,u, ¢ k)= 4
S (%, y, u(x, y), uy(x, ) for £ =0,
where xe[x? x@+4q], yeS¥(x, r).

for £ #0,

. THEOREM 2. Suppose that
(i;) Assumptions Hy and H, are satisfied,

2 ~ Annules Polonici Math. 48.3
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(ii,) u: E — R is a function of class C' on E and there exists a function y:
[0. 1)V x [0, k@] — R, such that

(15) |¢(x(i)’ ym’ Au(x“’, yU))’ ﬂu(x“), ym)], Au("_‘m’ yU))’ h;, k)—
—¥(x9, y9, u, b, k)| < y(h, k),
where (i, j)eT, (h;, kye H, h=(hg, hy, ..., hy,
(iiia) u(x'?, v) = w(y) for veEy and v: E* — R is a solution of (10).

Under these assumptions

ihL

(16) P — o0 < y(h, )~ for G, e T,
where h = max h;.
0<i< A
Proof. At first we prove that
. . el —1 "
@17 v&D <yl -y (h, k) I for (i, er.
Let
» . FL_ —
witd = i 4y (h, k) 3 for (i, j)er.

We prove that w satisfies the difference inequality
(18)  AgWiD > d(x®, yo, 46D, [W4-P], AWD, by, k), (G, j)eT.
In virtue of the assumptions of our theorem we obtain, for (i, j)e I" and for

a point P =(x®, y? 7, 5, 4, hi, k) eQ xH

Ny . ‘ iAL (AL __
Aow("") - _[u(|+ 1.1’)_Au(l.j)1+y(h, k)e (e )

h, AL
. euTL FL_l
= !Il(x(l)’ yU)7 u, hi’ k)+?(h’ k) (e )
hL
=P(x?, _VU', AWl ﬂw(i.ﬁﬂ’ A'ﬁ(i,j)’ h;, k)+

eiiL(elTL__ 1)

+y(h, )~

—@(x?, y, AutD, [ulD], Au?, by, k)] +
+[P(x?, yo, AutD, [ubP], 4u®D, by, k)—
—@(x0, O, AT, [F4I], 46D, by, k)]
> ¢(x“), yU)’ Aﬁ(i.j), [[ﬁ(i.ﬁ]], AW"'”, h,-, k) +
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eiil.(eil._ 1)

+7(h, k) 7L

—'Y(h, k)— B IAu(‘.J)_‘AW“"Dl—

= ¥ Lju®ito—whita 4 3 @, (P)[d4,uP— A, W],
t=1

seN(r)

Next, we have
4, Wi > ¢ (x®, v(l) AW H’ (”T“ AWED by, k) +

hL( IIL l)

+)’(h k)——r—_}’(h, k)—L‘l Z a,[u(i'j+s)—w'("1+')]l_.
L seN(r)
ihL __
- X Lyhk +
seN(r)
+ ), 4’q,(P)—[ Y (a,—bO) i+ — I+ 9] +
el ., seN(r)
+ Z 45%(13)—[ Z (b(st)_ s)(u(i.j+s)_w-(,-'j+,))]
fE'z k\. seN(r)
= O, 0, 4D, [509], 459, b b+
el (ePt — | ehl |
+7y(h, k) (e ) 4 —y(h, k) [+ Y L]+
hL seN(r)
et 1
tely ' L seN(r)

' eiﬁl._l
+2 2 (P)—[—v(h, k) J 2 (b —ay.

rel L seN(r)

Using Assumption H, we obtain
. s . . . = [efl—1
AO wi-d > ¢(X('), y(J), AW("-“, [[ﬁ;(u,;)]]’ AW("”, hia k)+‘}’(h, k)en\L : T _IJ

Z‘P(x(i) (.I) Awld [[W(' .n]] Aw“” h;, k).
This completes the proof of (18).

Since v satisfies (10) and v'>? = w'%? for je Iy, we conclude by Theorem
1 that (17) holds true.

In a similar way we prove that

el hL

(19) Cud _y(h, k) <o (i, jel.
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From (17) and (19) we obtain (16).
Remark 3. Suppose that h, = h* for i=0,1,...,n It is clear that
Theorem 2 holds with assumption (15) replaced by
|®(x, y, Au(x, y), Tu(x, p)], du(x, y), h* k)— ¥ (x, y, u, h* k)| < y*(h*, k)
for xe[x'?, x9+4a], yeS®W(x,r), (h*,k)eH and for a function y*:
[0, K9] x[0, k@] =R,

AssumpTioN H,. Suppose that
(az) # is a solution of (1), which is of class C? on E,
(b,) the constants ag, b{” satisfy the conditions

Y s.a,=0 fort=1,...,n,
seN(r)

Y sb’=—-1 forz=1,..,n, tel,,
seN(r)

and
Y b =1 fort=1,...,n t'el,
seN(r)

(c2) H=1(¢, mel0, H*1x[0, k] . <M. {, t=1,...,n and Pe
C(Q2 xH, R). '
We adopt the following notation:

71 (h, k) = max|@(x?, Yy, Aa®?, [a¢P], 4a®?, h, k) —
i, npel

— B (xD, YO, Aigtied, [@-2], 42, 0, 0,

ya(h, k) = max |f (<9, y9, 4GP, 4TD)—f (<O, yO, @, 79),

(2 ) (i.pel
va(h, k) = max |f (xOy?, a@d, ) —
dlbely
—f (x® +8h;, y9, a(xD+0h;, yP), @, (xO +6h;, y0)),
- M‘t k" -
Ya (k) = max Z 2" I Z Qs S, Sy uy,y.,' (Qij)l’

AIE-{())'E{] ,r'=1 seN(r)

where Q; = (x©, WV 4 8s, ky, ..., yi"+0s,k,) and

7(h, k) = 71 (h, K)+y2(h, k) +7y3(h, K)+y4(K).
THEOREM 3. Suppose that
(13) Assumptions H, H, are satisfied and v is a solution of (10),
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(ii3) f is continuous on E x R'*" and conditions (ao)—(do) of Assumption
H, hold with H defined in H,,
(iliz) the function & satisfies the following consistency condition:

Q) &(x?, y?, Aa®d, [@t], 4ut?, 0, 0)
=f(x?, yP, Aa®?, 4a®d, G, j)el,

where u is a solution of (1),
(ivs) there exists co > 0 such that k k. <co, T, 7'=1,...,n
Under these assumptions the difference method (10) is convergent to 4, i.e.,

(22) lim @ —v&M) =0, (i,jefl.

hk =0
Proof. First we prove that ,
(23)  o(x?, y? AP, [a®P), 4a®?, b, k)— ¥ (x©, Y, i@, h;, k) < F(h, k)
for (i, j)eTI, (h;, ke H, h = (hy, hy, ..., hp).

By the assumptions of our theorem we obtain, for some 8, §¢(0, 1),

. 1 , L
'P(x"’, _}’U), i, h;, k) = E[ﬁ(xw"'hh yU))_Aﬁ(x(l)’ yU))]

{@(x®, y9)+ bz, (x® +8h;, y9)—

EP,

- Y a[a(x®, y+ ¥ skt (x?, yP)+
seN(r) =1

+% Z (sr kt)(st' kr) ﬁy!ytr(x(“s y(ljl)+§sl kl, CERX yij")+§snkn)] }

Lr'=1
> f(xD+8h;, yP, a(x?+0h;, y, i1, (xV +0h;, y9)) =7, (k).

Thus

& (xD, yO, Aat?, [a¢N], aat?, by, k)— ¥ (xO, yO, &, b, k)
S[B(O, YO, Ade?, @], 42, h, k)—

- (x9, yO, 4ad, [@*N], 4, 0, 0)1+

+[f(x®, YO, 4G(xO, yP), 4a(x®, y))—

—-f(x“’, yU), z?(x"", yU)), E,(x“), ym)) +

+[f(x“’, yU), ﬁ(x(”, yU)), ﬂ,(x“), y(.h))~

—f (X +8h;, YO, T (xD +h;, y0), i, (x + B, yP))] + 74 (k)
< ¥(h, k).
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In a similar way we obtain the inverse inequality with respect to (23).
Thus condition (ii,) of Theorem 2 is satisfied for the functions u =1, y = 7.
Then we have

eiEL_ _
(24) |a? — P < F(h, k) for (i, j)eT,
where 7 — max h;.
0<i<n
Now we prove that
(25) » lim y(h, k) = 0.

hk =0

It follows from (20) and from the continuity of f, @, u, i, that

lim y, (h, k) = lim y3(h, k) = lim y4 (k) = 0.

hk -0 h.k -0 k-0

We prove that
(26) | lim y,(h, k) = 0.

hk 0

Since @ is of class C? on E, lizy .. (%, Y, lig, (x, Y| < C, (x, y)e E for some C
= 0. It follows from Assumptions H,, H, that

27 |4d®P @I < C Y ¥ Isck.ayl
seN(r) t=1
and
=D _ .0 ¢ { - () 1
(28) IAt u - uy, I < E 1 Z [Ias Sgr Sgr kt’ kc"l + |bs Sgr S kt' ktl] o
t seN(r) t',v''=1

t=1,...,n.

Since {k,| < colke|, 7,7 =1, ..., n, we see that (27), (28) and definition (20)
imply (26), which completes the proof of (25).
Condition (25) and estimate (24) lead to (22).

- Remark 4. We assume in (21) that the consistency condition is satisfied
along a given solution of (1). In Theorem 3 we can assume instead of (21)
that

¢(X, »z,pq, 0, 0) = f(x’ Y, 2, q)! (x’ Y.z, p, q)EQ

THEOREM 3. Suppose that |
(i3) assumptions (1,), (ii3), (ivy) of Theorem 3 hold,



Non-linear partial differential equations 239

(ii’;) the function ® satisfies the following consistency condition:
(29) B9, yO, 4G, [a0], 4, 0, 0)
= f(x9, Y9, a(x?, y9), 4a(x9, y9), G, jeT,

where u is a solution of (1).
Under these assumptions we have

lim (@ —v®?) =0, (i, jel.
h.k -0
This theorem can be deduced from Theorem 2. Estimate (15) is true for
Y(h, k) =y, (h, k)+72(h, k) + 73 (h, k)+7,(k), where y, 73, y, are defined by
(20) and

72(h, k) = max |f (<0, yO, @, 4G4D)—f (xO, yO, @0, G-D)).
i.ner '

Remark 5. Clearly, condition (29) is satisfied if
®(x,y,2,p,4,0,0=f(x,y,p,q) on L2, where 6 =(0, ..., 0)eR".

Theorem 2 gives sufficient conditions for the stability of the difference
problem (10). Although Theorem 3 guarantees that a consistent and stable
method is convergent, it is hardly useful for purposes of estimating the error
of the method; in particular, it fails to indicate the order of the error. The
next theorem states that if some additional conditions are satisfied, then the
error of the difference method is of a-th order.

THEOREM 4. Suppose that
(iy) Assumptions Hy and H, are satisfied, '
(ii4) @ is a solution of (1), which is of class C! on E and v is a solution

of (10),
(iiiy) there exist constants C >0, a > O such that
(30) IQ(X(‘), ymy AE“J), u:ﬁ("j)j[ly Ai‘-ﬁ'ﬂ! hl', k)_
_W(x(i), yU), ﬁs hi’ k)l < C”h”a9 (l: j)el‘,
where (h;, k)e H, [|h| = max h,.

o<i<n

Under these assumptions the difference method (10) is convergent and

AL _

62 =082 < Clh ——

for (i,j)ef.

This theorem follows from Theorem 2 for y(h, k) = C||hl|"
Remark 6. Suppose that hy=h for i=0,1,..., 7. It is clear that
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Theorem 4 holds true if (30) is replaced by
|®(x, y, Ai(x, y), [i@(x, )], dia(x, y), b, k)—¥(x, y, @, h, k)] < Ck*
for xe[x?, x94aq], yeS¥(x, r).

Remark 7. All theorems from this section can be reformulated for the
case when E is the unbounded zone defined in Remark 2.

4. Examples. If r > 0 and s = (s, ..., 5,) EN(r), we write t(s) = (sq, ...
ey Sec 1 Se+ 1 Seiq, o, s)and —t(s) =(S4, --0, Se—q1s Se— 1, Serqy ..., 8,). In
particular, t(#=(,...,0,1,0,...,0, -t6=(,...,0,-1,0,...,0
(1, —1 standing on t-th place), where 8 = (0, ..., 0)eR".

I. Suppose that f satisfies assumptions (i){ii)) of Theorem (T). Let
r=1,a,=1and a, =0 for s # 60, seN(1). Let I, and I, be us in Section 1.
Suppose that tel, and b‘i’,(;,, =1, b"=0if s# —1(0), se N(1). Let tel,;
we define b%) =1 and b =0 for s # 7(0), se N(1). If ®(x, y, z, p, q, &, 1)
‘=f(x, y, z, q), then the one-step method (10) coincides with Euler’s method
considered in Theorem (T).

II. Suppose that r =1 and

1
a:(m=a—z(o)=£, t=1,..,n,

31
Gh) - a,=0 ifs#t(0) and s# —1(0), t=1,...,n, seN(1).
Let
| 1
o =——15_. =1, ...
br ® 2n %51'1 s 7,1 la > N,
l .

(t)‘ =< ’ ! = e

(32) _b—r(ﬂ) 2n+%5n ’ T, T 19 s n,

b =0 for all remaining se N(1).
Consider the difference method '

Ao wid = f(x“’, ym’ AW“'”, AW“")), (i,j)el“,
(33) © _ : o
wod =w@(V), jel,,
where 4 =(4,, ..., 4,), XV =xO+ih, i=0,1, ..., ny, ngh =a, y? are de-
fined by (4) and

Aw(l’.ﬁ = zl i (w(l'.tU)) +.w(i.—t(j)))
n.=1

(34) 40 wid = % [w(i +Lp_ Aw(i-ﬁ]’

1 . .
(w(l.t(.i))_ wh= ) =1, ..., n.

T

A: whid =
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Assume that
k, ,
(39) k—<co, t,77=1,...,n,
.

for some ¢y > 0.

LemMma 1. Suppose that
(oty) the function f: ExR™*"™ >R of the variables (x, y, z, q) is con-
tinuous, the derivatives f,, f, = ( f,“, ey fcn) exist, are continuous and bounded
on ExR'*"
“(By) @ is a solution of (1), which is of class C* on E, and k; < hM, for
i=1,...,n
(y,) Uis a solution of (33), (34) and for (x, y, z, ggc E xR'*" we have

h
1+hfz(X,y,Z,Q)—";“|fq,-(X,y,Z,‘I)|30, i=l,---, n.

Then

lim (@™ —3%?) =0, (i,j)el.
hk -0

This lemma follows from Theorem 3 for &(x,y,z, p,q, &, n)
=f(x,y,2,q, I,=11,...,nl. We do not assume that Jar I=10m,
satisfy (7).

Suppose that. r =1 and that the difference operators 4,, 4 =
(44, ..., 4,) are defined by (31), (32), (34), (35). Consider the difference
method .

Agw'? = f(x®, yO, whd, aweD), (i, jeT,

(36) : :
wo = (), jel,.

LEMMA 2. Suppose that

(ot2) conditions (a,), (B;) of Lemma 1 hold,

(B,) ¥ is a solution of (36) and for (x, y, z, 9)e E xR'T" we have

f(x, y,2,9 20,
h
14+ 2nhf,(x, y, z, q)—-n;lf,"(x, y.z, 9| =0, i=1,...,n.

Then

lim (@?—5%") =0, (i,j)el.
hk —0

This property of (36) follows from Theorem 3 for
®(x,y,2,p, 4.5, m)=f(x,y,p,9), I, =A{1,...,n}.
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III. We consider the initial valhc problem
zx(x’ y) =g(x’ y,z(x, y))—sz(x’ y)’ (x’ y)EE’

z(x?, y) =w(y), yekE,,
where x, y are scalars, M > 0 and

(37)

E={x,y): xe[x?, x®+a], ly—y? < b—M(x—x"),

(38)
Eo = [y'”—b, y?+b].

For h, k > 0 we define
X =xO4jh, i=0,1,...,n,,

ym=y(0)+jk_ j=—n, —n+1,...,—-1,0,1,...,n,

where noh = a, itk = b.

AssumptioN H;. Suppose that

(a3) the function g of the variables (x, y, z) is of class C! on E xR, the
functions g, g,, g,, g. are bounded on E xR,

(bs) the derivatives g,,, g,., g,. exist and are continuous on E xR.

Lemma 3. If _

(a3) Assumption H, is satisfied and g,(x, y,2z) >0 on E xR,
(B;) @: E—-R is a function of class C® and satisfies (37),
(v3) v: E* = R is a solution of the difference problem

R w(i.j+1)+w(i.j—l)
(39) witih = > +

' (i,j+1) (ij-1) (i, j+1) (i,j-1)
) w +w w —w -
+ ho (X('), y('D, D) ’ 2% )’ (i, j)el",

W =), yWeE,,

where k = Mh,

F={ij)i=0,1,...,n—1, (x?, y)eE}
and
(40) P(x,y,2,q9, W) =g(x,y, 2)—Mg+ih[g.(x, y, 2)+
+4:(x, y, 2)g(x, y, 2)-2Mqg.(x, y, 2)— Mg,(x, y, 2)],

then there exists C > 0 such that

[2(®, yM) —v(x?, yM < Ch?*  for (x?, yP)eE.
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Proof. This lemma follows from Theorem 3 for n=1, r=1, a = 2,

z(x, y+k)+z(x, y—k)J
2 1]

1
doz(x, y) = E[z(x#-h, y)—
@1 | '
4yz(x,y) = —21—([2(% y+k)—z(x, y—k)]

(ie,a.,=4%,a,=0,a,=4,b_, =1, by =b, =0) and for P given by (40).
IV. Now we give an example of the difference method of the second
order which is patterned on methods of Runge-Kutta type.

LemMMA 4. Suppose that

(0s) Assumption H; is satisfied and g,(x, y, z) > 0 on E xR,

(Bs) u: E— R is of class C? and satisfies (37),

(vs) v: E* — R is a solution of the difference problem (39), where k = Mh
and

(42) @(x,y,2,9, b
h

. h
=(1-Bg(x,y,2)+pg (Hﬁ, A 2+ﬁ(9(x, ¥, 2)— Mgq))-

— MLk, (x, ) 2)+9. (%, v, 2)q] ) BeR, B #0.

Then there exists C > 0 such that
@ (x®, yM)—v(x®, yM) < Ch*  for (x®, yMeE.

This lemma follows from Theorem 3 for n=1, r=1, a =2, 44, 4,
given by (41) and for @ defined by (42).

V. Now we give an example of a method of the third order. We
consider problem (1) for n = 1. Let E and E, be the sets defined in Section 1.
Suppose that f is of class C* on E xR? and i is a solution of (1), which is of
class C* on E. Let S = (x, y, it(x, y), é,(x, y)). Suppose that F is a function
of the variables (x, y, z, q) and that F is of class C' on E x R%. We define

U, F(S) =F(S)+F.(S)F(S)+F,(S)[F,(8)+F.(S)u,(x, y)+ F(S)a,,(x, y)].
U, F(S) = F,(S)+ F.(8)i,(x, y)+F,(S)a,,(x, y).
Suppose that the operators A, B satisfy

Zaf=l! Zb'= ’ Zial=0, z,b,=—l,

i=-r i=-r I=-r i=-r

z (a;—b‘)ziz = 0, i (a,-—b,-)’ i3 =0.

i==-r i=-r
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Let P=(X, Y.z, pq, h’ k)? p=(p—n e P~y pOs P1s - 9pr Q—(x y, pOH q)
and

Vi F ()
= F.(Q)+F.(Q F(@+F,(Q[F,@+F.(Q)4+F,(Q G, p, h, b],
V9 F(Q) = Fy(Q)+F. (@) q+F @G p. h k),

where G is a given function.
Let ¥ be the exact relative increment functlon defined in Section 3.
Then we have

@) P(x,y, @, b, k) =[x+ b, )= Ai(x, )]

h h
_u (x y)+7huxx(x y)+ xxx(x y)+ xxxx(x+91h y)_

k2 r 3 r )
_E - lzalu))’(x y) 3' h ryy(xo y).z:_ 13‘zl—
k4 r

TR Y itaiy,,,(x, y+09k),

where 0,, 09¢€(0, 1) and
Uy (X, y) = f(8),  tue(x, y) = U,f(S),
Uexx (X, Y) = USc () +H/ O U, L +L S US (9 +
+US O U, S )+ UL S)+ UL (S, (x, y)+
+£. UL (S)+ U fy(S)u,, (x, y)+ £, (S) iy, (x, )],
tyyy (%, ) = U, £, (S)+ U, L (S)ia, (x, y)+
+:(8) iy, (x, Y)+ U, [ (S) iy, (x, )+, (S) idyy, (x, ).
We define an increment function @ by
46)  P(P) = f(Q+IhVIVL(Q)+1h VIS (Q)+
+(Q VM L(Q+(Q VIS (Q)+
+V L@V (Q+L(Q IV 1)+
+VL(Q) a+£(Q V1 (@) +
+ VG, p, b, D+LQ G} -

k2r 3

2 k o3
—ﬁ l a,-G(z, p;.h’ k)-ﬂGO(z p,h k) z 1~ a;,

45)

i==-r i=-r



Non-linear partial differential equations 245

where _ :
47 G = K™ Q@+ V"™ L(Qa+L(QG(, p, h b+

+ VM@ Gz, p, b, )+£,(Q) Go(z, p, h, k).
Suppose that k = Coh for some Cy, > 0. In virtue of (28) we have
(48) | |4i(x, y)—i,(x, y)l < D, h*
and

49 |f(x, y, d4(x, y), da(x, y)—f(x, y, a(x, y), d,(x, y))| < D, k?

for some D, > 0.
Now we define functions G and G,. Let r =3 and

Az(x, y) = $z(x, y—2k)+3z(x, y)+5z(x, y+k),
Bz(x, y) = z(x, y—k).

Then condition (28) holds. Let

(51 Gz, p, h, k)

(50)

L|3+y 1+2y 1+2y 2y 2+
=21 s P-2— 3 !7—1+—‘2 Po_‘j‘Pl'*' 6 p.—z2

and

(52)  Golz, p, h, k)
1
3

[0+ p-3—(66+49) p_, +(156+3) p_, —(205+2) po+

+(156+1%) p, — (66 —2) Pz‘*“sl’a]_ka’

where y, deR. Then there exists D, > 0 such that
|G (Aui(x, y), Fi(x, y)], h, k)—d,,(x, y)| < Dy h®
and
|Go (4 (x, y) la(x. 1, h, k)—i1,,, (x, )| <D, 1.
It follows from these estimates that & defined by (46), (47), (50);(52)
satisfies
|¢(x y, Aut(x, y), fa(x, y)L au(x, y), h, k)—¥Y(x. y, i, h, k)| < Db,

where D > 0.
We do not go into the details of the method.
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