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1. Introduction

The theory of distributive lattices was first applied by W. J. Gordon [27],
[28] to problems of multivariate interpolation. Since then various applica-
tions of this generalization of the classical blending interpolation method
[11], [14], [29] to different fields of applied mathematics such as the finite
element method [12], [35], [36], [41], [42], computer aided geometric
design [2], [3], interpolation [18], [19], [20], [21], approximation [32],
[33], [37], and harmonic analysis [4], [6] have been found. In this paper we
describe the basic constructions of Boolean algebras of multivariate interpo-
lation projectors and the related remainder operators. We will illustrate the
method of Boolean interpolation by considering bivariate polynomial and
periodic spline interpolation. Furthermore we will discuss Boolean methods
in multivariate interpolation of higher dimensions.

2. Parametric extensions

One basic construction in the Boolean theory of bivariate interpolation (and
also multivariate interpolation) is the method of parametric extension of
linear operators. A systematic functional analytic approach’ via tensor prod-
ucts is presented in the paper [25]. Let k,,..., k, be natural numbers
satisfying 1 <k, <k, <... <k,. This sequence is associated with r sets of
interpolation points ordered in the following way:

[25]
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Xis ooy x,‘l,
xh1+la seey ka’

X, _q+1s -5 Xk, -

We assume that x,, ..., x,_are distinct points in the real interval [a, b]. For
each set {x;,..., x } let

Srms oo Sogumy € CLa, 0] (m=1,...,7)
be a set of associated fundamental functions:
fl:.m(xn)=6i,u (l"‘:l,’km)

Similar constructions are assumed for the second variable. Let 1 </, <,
<... <l be an ordered sequence of positive integers which are related to r
sets of interpolation points

YVis -oes yll’

yll+l’ seey ylza

Y _qy+15 00 Vi

Again the interpolation points y, ..., y, are supposed to be distinct and

contained in a compact interval [c,d]. The related sets of fundamental
functions are

:gl,m---,gln,n} C(ﬂ[cad] (n=l9---a r)-

The sets of fundamental functions are used to construct parametrically
extended interpolation projectors P, and Q,:

km
Pm(f)(x’ y) = _Z f(xi’ y)ju:,m(x),

Qn(f)(x’ }’) = '21 f(x’ yj)gj,n(y)

where f €% ([a, b] x[c, d]). It is obvious that P,(f) and Q,(f) satisfy the
following interpolation conditions:

Pm(f)(xi’ ) =f(x|'7 .) (l =1,---akm);
Qn(f)(.a yj)=f(.s y_,) (j=19---91n)-
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For the fundamental funttions we make the additional hypotheses
<_fl,m9 ~--9ﬁcm,m> = <f1,m+l’ -*-9ﬁcm+l,m+l> (m = la ceey r_l),
@l,m ey gl,,.n> = <gl.n+ly seey gln+1.n+l> (n = 19 veey r_l)

These inclusions imply specific properties of the associated interpolation
projectors which are listed below:

Pm+iPm=Pum+i=Pm (1<m<m+l<r),
<

Qn+an=QnQn+j=Qn (1

We consider two important examples for which the additional hypotheses are
valid.

n<n+j<r).

ExampLE 1. The fundamental functions are the Lagrange polynomials
<fl,ma .. -’j;cm,m> = Hkm— 1

G- Gipn) = ”t,,—l-

ExampLE 2. We denote by Sp(x,,..., X, ;2gq—1) the space of 2n
periodic splines of degree 2g—1 with knots !x,, ..., X, } < [0, 2nf, x; = 0.
Similarly, Sp(y;. .... y,,; 29 —1) is the space of 2rn periodic splines of degree
291 with knots {y,, ..., v} < [0, 2n[, y, =0. It follows from the prop-
erties of spline functions that there exist fundamental functions f; , and g;,
such that

<fl,m’ °"9j;cm,m> = Sp(xl, ey ka; 2‘1" l)a
@l,m LERS gl,,.n> = Sp(yl’ LERE yl"; 2q— l)

[26]. Now the construction of the interpolation point sets ‘imply that the
relations |

Sp(xq, .0 X, 529—1) SSp(xy, ..s %, 529—1) (m=1,...,r=1);
SP(.Vl, sy yln; zq_l) ESP(}H, ey ,Vl,,ﬂ; 2‘]—1) (n = la (R r_l)

are true.

3. Lattices of interpolation projectors

It follows from the construction of P, and Q, that the operator product
P,Q,=Q,P, is again a projector on % ([a, b] x[c, d]) having the explicit
form

km I

PoQu(F)(x, )= X ¥ fxi, ¥) fim()gjn(y)-

i=1j=1
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P, Q, is called the projector of tensor product interpolation. It has the
interpolation properties

Pan(f)(xia .V,) =f(xi9 y]) (l = 1’ LR km’ J = l’ LX) In)

Since P, and Q, commute, its Boolean sum P, ®Q, = P,+Q,—P,Q, is
again a projector on %([a, b] x[c,d])). P, ®Q, is cdlled the projector of
Blending interpolation. It possesses the transfinite interpolation conditions

(Pm®Qn)(f)(xi’ .)=f(xi7 .) (‘=1’5km);
(Pm®Qn)(f)(.’yj)=f(.’yj) (.I=17’Iu)

P,Q, and P, ®Q, are special projectors obtained from the set of com-
muting projectors

.Y’= :Pl’ ceey Pr, Ql"",Qr}'

They are special elements of a larger set of commuting projectors which will
now be described. For this purpose we introduce operations on a given set
¥ of commuting projectors. Let

¥ =1{PQ: P,Qe ¥

and
¥ =P®Q: P,Qe¥).

& and ¥ are again sets of commuting projectors satisfying
ygc¥cy.
Thus, these constructions can be iterated. We define
£ =9,
Liv1:=% (ke V)
which are again sets of commuting operators satisfying
Yy k=1,2,..).

THEOREM 1. Let Z:= 2, %,. Then Z is a set of commuting projectors
containing ¥. Moreover, the following relations are valid in &:

(1) PQ,P®Qe¥ for all P,Qe¥;
(2 P(Q®R) =(PQ)®(PR) for all P,Q, Re ¥;
3) P®(QR) =(P®Q(P®R) for all P,Q,ReZ.

Proof. Let P, Qe %. Then P, Q€ ¥, for some k and we get
PQe ¥, € #s1 =&,
P@Qey]"l:«-(/jk.pl g..(}.
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The remaining identities are easily checked by computation. m
¥ is a partially ordered set with respect to the order relation
P<Q<PQ=QP=P.

Thus, Z is the smallest distributive lattice of commuting projectors con-
taining Z since inf {P, Q) =PQe, sup{P, Q) =P®QeZ for arbitrary
P,Qe’.

It follows from the relations (2), (3) of Theorem 1 that the finiteness of
& implies the finiteness of &.

4. Chains of projectors

A basic principle of Boolean algebra in multivariate interpolation is the
concept of a chain. Note that P, im=1,...,r) and Q, (n=1,...,r) are
chains in .&, ie.

P,<P,<..<P, 0,<0,<..<0,.
We define a new family of projectors in . by
C,=P,0,,
C,=P,0,®P,0,,

C.=P 0, ®P,0,.,0D..®P0Q,.
Since
C,=sup\P,Q, P,Q, 4, ..., P,Q,}
>sup P, Q, P,Q, 4, ..., P, Q;)
2sup Py Q,_y,..., Proy Q4]
=C, -,
it follows that C; (j =1, ..., r) is again a chain in 2:
C;<(C;x...<C,.

Thus, we have constructed a new chain of nontrivial projectors from given
chains which are defined as parametric extensions.
Since for i=1,...,k,; j=1,...,1,; m+n=r+1 we have

Cr(f)(xi’ .V,) = Pan Cr(f)(xia y_;) = Pm Qn(f)(xb .V;) = f(xia y})
it follows that C,(f) interpolates f at the union of the sets of interpolation
points of P, Q,, ..., P,Q,:

Cr(f)(xb y)) =f(xi’ y]) (l = 19 ceey km; .’ = 1’ LERE In; m+n =r+l)
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To determine the space of interpolants of C,, i.e. ran(C,), we note that
ran(PQ) = ran(P) nran(Q),
ran(P @ Q) = ran(P)+ran(Q),
for P, Q€. Thus we have
ran(P,Q0) = {fim®ginii=1, .. ks j=1,.., L}

and

ran(C)= ) ran(P,Q,.

m+n=r+1

For computational reasons it is important to have a sum representation
for C,.

Tueorem 2. Let Py, ..., P, and Q,, ..., Q, be chains in £. Then the
Boolean sum projector C, = @p+n=r+1PmQn has the sum representation

r r—-1
Cr= Z PjQr+1—j_ z PjQr—j'
j=1 j=1

In view of its importance we include the inductive
Proof. We have

C = 6')1 PjQr+l—j
j=

=(P,Q,®P,Q0,_1®D..®P,_1Q,) ®P,Q,
=(P,Q,®...®P,_,0,)+P, 0, —(P1Q0,®D...®P,_,Qy)
=P1 Qr+ °"+Pr—l Q2+PrQl—(Pl Qr—l+ oo +Pr—2Q2)_Pr—l Ql

r r—1
=Y PiQi1-j— Y PiQ, ;. m
ji=1 j=1

The sum representation of the Boolean interpolation projector C, yields
an explicit construction of the corresponding fundamental functions. Note
first that (with k, =0, [, = 0):

r bt1-m-n

r-m km
Cr(f)(x9 y)= z Z Z Z f(xl" yj)Fi,j(x, .V)

m=1n=0i=1+kpy_y j=1+l_pm_p

which corresponds to the disjoint decomposition of the interpolation points:

U xy)i=1 . ke j=1,.., 1L}

m+n=r+1

?lcw

U {(xi’ yj): km—l <i s km; lr—m—n <j < lr+1—m—n}'
1n=0
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In view of the interpolation properties of f;, ®g;, we have

Fi,j(x’ y) = Cr(f;,r ®gj,r) (x’ y)
which implies the explicit formula

m+n m+n—1
Fij(x, y) = Z fl:.s(x)gj,r+l—s(y)— Z ﬁ.s(x)gj.r—s(}’)
(km—l <is< km; lr—m—n <.] < Ir+l—m—n; 1 Em< r; OS n< r_m)-

ExampLE 3. As fundamental functions f; ,, and g;, we choose polynomial
Lagrange functions associated with the sets of interpolation points specified
in the following way:

km=mv n =N, xi=ia yj=j-

The set of interpolation points of the Boolean interpolant C,(f) is given by
the triangle:

{6, 0: 1<, j;i+j<r+1}.

The space of interpolants is spanned by the monomials x'y/ (0 <i,j;i+j
<r-1):

ran(C, = Z Hm—l ®H"_l.

, mta=r+1

The set of interpolation points for r =3 is given in Figure 1. The
cardinal functions are:

Fyi3(x, y) = f1,1(%)g3,3(»),

Fi2(x, ) = f1,1(0)92,30)+ f1,2() 92, (0) — 1,1 (X) 92,2 (),
Fi1(x,9) = f1,1(0)91,30)+ 1,2(0)91,20) + /1,3(X) 91,1 ()
= f1.1 (%) g1,200) = f1,2(x) 91,1 (0);

Fy3(x, y) = £2,2(%)92,2(9),
Fy1 (%, Y) = f2,2(¥) 91,200+ f2,3 (%) 1,1 () — f2,2(x) 91,1 (¥);
F3,1(x, y) = f3,3(x) 91,1 ()

Fig. 1. Interpolation knots on a triangle
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ExampLE 4. Again we choose polynomials as fundamental functions. The
interpolation points are given by
k,=2m, |, =2n,
Xpi—g =14+2(r—i), X5 =—Xx95-y (@(=1,...,0),
Vaj-1 =142 —=j), ya=—yz-1 (G=1...,1.
The space of interpolants for C, satisfies

ran(cr) = Z Han—l ®H2n—l'

m+n=r+1

The set of interpolation points for r = 2 is illustrated in Figure 2.

Fig. 2. Knots for Serendipity interpolation

ExaMPLE 5. Let

f — I3 o —
X5 oees Xi, ) = liby: =0, ..., 2"—1]
and

=2 {...n}=Uhj=0,..2"-1}
L, (x) is the unique periodic fundamental spline function of degree 2g—1
with knots ih, (i=0,...,2™-1), ie.
L,(@hy) =6p; (=0,...,2"-1).
The interpolation projectors P, and Q, are obtained by translation [26]:

2m—

Pm(f)(xa ,V) = ._zo f(lhm’ y)Lm(x—lhm)’

2n-1

2. (N)(x, y) = _Zo J(x, jhy) Ly (y—jh,),

Figure 3 gives an illustration of the set of interpolation points for C;(f).
We add a list of typical fundamental functions:
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Fig. 3. Periodic spline interpolation

Fy1(x, y) = Ly (x) L3y() + L (x) L2 (y) + L3 (x) L, (¥)
—L(x) L2 (y) — Ly (x) L, (1),
Fi3(x,y) =Ly (x) Ly(y—hy)+ Ly(x) Ly(y—hy)— L, (x) L, (y—hy),
Fys(x,y) =L, (x) Ly(y—hy),
F33(x,y) = Ly(x—hy) Ly (y—hy).
The graph of F,,(x, y) is shown in Figure 4.

5. Remainder projectors

It is an important aspect of Boolean methods in multivariate interpolation
that remainder formulas are obtained by duality techniques of Boolean
algebra. For this reason we will use the procedure of Section 3 to construct a
smallest Boolean algebra of commutative projectors containing a given set
X of commutative projectors. We start with the description of the simplest
cases.

We will denote by %*! = %*!([a, b] x[c, d]) the space of continuously
differentiable functions f with continuous mixed partial derivatives

orif
ox' ay’
Let I be the identity operator and

pP,=1-P, Q.=I1-0,

be the remainder projectors of P, and Q, respectively. We assume that Pg,
and Q5 have integral kernel representations with square integrable kernels

Gm(x’ S) ELZ ([a’ bJZ)’ Hn(ya t) ELZ ([C, d]2)9 i.e.,

U'jf =

b
[ (X, V)= Pu()(x, ) = [Gu(x, )D™° f (s, y)ds,

3 — Banach Center t. 22
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Fig. 4. The spline basis function F, ;(x,y) on [—n, a] x[ -, n]

d
S ) =0u(N(x, y) = [Ho(y, ) D" f (x, t)dt

with suitable numbers x,,, 4,€. 4"
As an example we consider the polynomial case. We have

) <f1.m ---sfk,,,.m> = Hkm—l’
G1.m "".gln.n> = Hl,,—l
and %, = k,,, A, = l,. The kernel functions G,(x, s) and H,(y, t) are given by
Gu(x, s) =(x—x)...(x—=x ) M(x, Xy, ..., X, $),
e
kn—1)!"°
H,(y,) =(—=y)...0=y ) MY, y15 ..., yi,p D)

Next we will derive the remainder formulas for the simplest Boolean interpo-
lation projectors P, Q, and P, ® Q,.

Note that for any two commuting projectors P and Q we have the
duality relations

M(x, X1, ooy X5 8) = [X, Xq5000s X, ]

(PQ) = P°® ",
(P®Q)° =P Q.

In particular, (PQ)° and (P ® Q)° are again commuting projectors.
For smooth functions f e%*™'" we obtain the integral remainder for-
mula of blending interpolation
bd

F(5 D)= Pn ®Qu(f)(x, Y) = [ [Gulx, ) Ho(y, ) D™ f (s, 1) dt ds.
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Similarly the integral remainder formula of tensor product interpolation is
given by

b d
S D= Pu@u(N (X, ) = [Gu(x, ) D™ f (s, Y)ds+ [H,(y, ) D" f (x, 1) dt

[ [Gux: 9 Haly, DD 15, 1) drds.

The remainder formula for C, = P, Q, ®... ® P,Q, will be derived in a more
general setting.
Let ¥ be any set of commuting projectors. Then

N =|P: Pe ¥} U \P: Pe¥)

is again a set of commuting projectors. Moreover, Jf is closed with respect
to complementation, i.e.

Pe X =P =]—-Pe.¥ for all P.

Thus we may apply Theorem 1 to .¥ and obtain a distributive lattice .#’
of commuting projectors. Since the generating set .¥" is closed with respect to
complementation we obtain a refinement of Theorem 1.

TuEOREM 3. The distributive lattice ¥ of commuting projectors generated
Jrom %" is closed with respect to complementation, i.e. X is a Boolean algebra.

The proof is a simple conéequénce of the following
"LEmMMA 1. For every je.4 the relation
Ae X ;= A°e X
is true.

Proof. We start with j = 1. Then A €.¥, implies
A=Ble ®B3B4 (Bl’ Bz, B3, B4E~I).
Then
A° = (B @ B3)(B3 ® BY).
Since BS, BS, BS, B €.# we obtain
B ®BS, Bi@BieX" = X,
and thus A°e.#’. Next assume j > 1 and

A =Ble®B3B4EZ/]= 4”/}'_1.
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Then By, B,, By, Bye .¥;_, and
A° = (B ® B3)(B3 @ BY).
The induction hypothesis shows Bj, B3, B3, By€ .#7j_, and then
B @B, B ®Bse X}, = X,

This implies A°€.¥; which bompletes the proof of the lemma. =
Recall that .¥'=(J2, .¥; with

N SH S X =Hey (G2, A=A

Now Theorem 3 follows immediately from the lemma.

Note that the finiteness of X again implies the finiteness of X, the
Boolean algebra generated from X

As an application we determine the remainder of Boolean interpolation
defined by C,.

THEOREM 4. The remainder projector C; is given by
(P,Q,®P,0,-,®..0P, Q) =P IOP_T01®.. P Q- ®IQ;.

Proof. The proof is carried out by induction. Taking into account the
order relations

PizP52...2P, 01=202...2Q¢
we can conclude .
(P,0,®...®P, Q)
=(P,Q,®P,Q,_,®...®P,_, Q) (P; ®QY)
=P I®P_,050...0PQ_, ®IQ)(P:® Q)
=P PiI®P;_,P;Q5®...®P{P;Q;_, ® P Q)
DP-1QOP-,0501D...®P Q- 01 DI QY)
=PI®PQ:D.. OPQ:_, DP;Q)
DP-1QI®P_,0®D..0P1Q;-, ®IQ)
=PI®P_,0i®..®P10,-, ®IQ;

which completes the proof of Theorem 4. w
Combining Theorem 4 with Theorem 2 we obtain a sum representation
for the remainder of Boolean interpolation:

Ci=I1-C,=1-P,Q,®...®P,0Q,
=P+P_ Qi+ ... +P{Q_ 1 +Q—(Pi Qi+ ... + P Q9).
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Using the remainder kernels of polynomial interpolation we obtain a remain-
der formula for polynomial Boolean interpolation which holds for sufficiently
smootb functions:

f(x$ y)_Cr(f)(xa .V)
d
= }G,(x, )D*° (s, yyds+ [H,(y, ) D™ f (x, t)dt

r~-1bd

+ 2 [fGrj(x, ) Hy(y, t)D’ i £ (s, ) dt ds

j=1lac
r bd

= X [[Gewi-s(x, ) Hy(y, ) D * 17 f (s, t)dr ds.

j=tlac

We use the sum representation to derive an asymptotic error estimate for
spline Boolean interpolation.
Let k = 29 and let

D,(s) =2 i n~*cos(ns—kn/2)
n=1

denote the Bernoulli function of degree k. Following Korneichuk [34] we
introduce the kernel

am—y
Go(x, ) = Dy(x)—Dy(x—5)— Y. L, (x—ihy) (D, (ih,)— Dy (ih,—s)).

i=0
Then we have

2n

1
S (%, y) = Pu(N)(x, y) = o— fG (x, ) D*O (s, y)ds

and

2r

1~
sup -— ‘ IG,,,(X, S)I ds < Ykh'r‘n

0<x<2x 2 0

where ¥, is a constant independent of m. Using the sum representaiion of C,
we obtain

1f (x, )= C.(f)(x, Y| < 7 BE(IDO fll o +1ID** f1l.)
r—1

+ Z Yr- jyj ”Dkkf”ao

j=

+Z Yr+1- ﬂjhr+l -j ”Dkkf"uo
j=1
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Since h; = 2r/2/, it follows that there exists a constant y independent of r
such that the following error estimate for spline Boolean interpolation holds:

1
1 =Co(llw < 7 (L+7) B = o(%).

Using Theorem 2 the dimension of the space ran(C,) of interpolants is given
by
dimran(C,)

r—1
= Y (dimran(P;Q,,,-)—dimran(P;Q,_;))+dimran(P,Q,).

j=1

For the example of spline Boolean interpolation this implies
dimran(C,) =(r+1)2".

Note that the corresponding spline tensor product interpolation projector
P, Q, satisfies a similar error estimate as C,:

If =P Q. (N =0(1/2%),
but dimran(P,Q,) = 2%".

6. Extensions to higher dimensions

In the paper [16] we have extended bivariate Boolean interpolation to
higher dimensions. We will briefly describe this method and will derive a
representation formula for d-variate Boolean interpolation. Naturally, the
notations and the combinatorical aspects are more cumbersome than in the
bivariate case.

Let D =[a,, b;]x ... x[a4, b;] = #* be a compact rectangle and C(D)
be the vector space of continuous functions on D. We consider the paramet-
rically extended interpolation projectors:

a"(mu)
P:.“(f)(xl’ sty xd) = Z f(xl’ cevy xiu,m sery xd)g;:'.‘u(xu)
i,=1

u=1,...,d).
Here we assume that m,€.4" and aq,(m,) €.+ such that
a,(m) <a,(m+1) (=1, .., 4d).
The sets of interpolatibn points are given by
Xius ooos Xampwy Sl b @W=1,...,4d).

The elements are assumed to be distinct.
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The functions
gr.ebla,b] (1<i,<a(m)u=1,..4d

are the associated fundamental functions. For instance, g7%, ..., g:,':‘ (m,).u MAY

be chosen as polynomial Lagrange functions in I mp-1-
The set

@ = Ol (P™: m, e}

generates a distributive lattice % of commutative projectors (see Section 3).
Taking X = £ U Z° we obtain a smallest Boolean algebra )" of commuta-
tive projectors containing .#. Special interpolation projectors of .#  are the
tensor product interpolation projectors Pi!... P} which possess the represen-
tation

P'lll P;d(f)(xl, veey xd)
) ag(ny) agq(ng)
= Z Z f(xll,l, cens xid,d)g;'ll.l(xl)"'g?:.d(xd)-

i1=1 iqg=1
The interpolation properties of Pi'...P;! are described by
P'lll °--P:d(j)(xi1,l’ ceey xi,,a) = f(xil.l, cees xid.d)

(il = l, ooy al (nl); cees id = 1, ceny ad(nd)).

The method of d-variate Boolean interpolation is defined by the projector
B,,= ® PP

myp+..+tmg=q
[16]. The interpolation properties of B, ,(f) are given by
Bq.d(f)(xil.l’ ceey xid,d) =f(xl'1.l’ ey xl:d,d)
(il = 1, ceey al (ml); ceen id = 1, ceey ad(md); ml+ +md =CH

The projector of d-variate Boolean interpolation has an explicit sum represen-
tation [16]:

-1 d—1 m m
Bua= Y (1 (" ) Y PPN
j=0 J Tmyt . tmy=q—j

(In this formula, empty sums are zero by definition.)
For d =2 and d = 3 we obtain ([16]):

B.,= Y PP'P}*- Y PP}

myg+my=gq ’ my+my=q-1
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B,; = Y PT P32 P3?
my+mytmy=gq
-2 Y PTY P72 P+ Y P P72 PY?
my+my+my=q-1 my+tmy+my=q-—2

We have shown in Section 5, Theorem 4, that the remainder projector of
B, , is given by

(B2 =(P{" ' I ® (P17 (P ®... (P (PY ) @1(PY ).
Our objective is to extend this formula for the remainder projector of d-

variate Boolean interpolation B, ,. In order to simplify the construction we
introduce some new notation. Let

Qt=P, .., Q=P
Q/=0 fori<O,

Q=1 fori>s

It is easily seen that

Qui= @ gl..g= @ 0.0,
ip ¥ tig=r iy 4..tig=r
iyeZ 1€i,€r+1~d

Moreover, Q,, is a chain satisfying

QLJ =0 for r <;d,
© Qi< Qg forreZ,
Qa=1 for r > (s+1)d.

First, we determine the remainder projector of Q,,.

LEMMA 2. The relation

r—1
Q.= @ (@Y@)= .g(Q.-'Y(Qf—n—a)‘

i+j=r—1
holds for r < s.

Proof. Note first that

@) =@} =0 forij>s
and

@) = (QM,), (@I =(Q})r fori,jeZ.
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Then we obtain

- @ (@) =(Q)rDQ-)D...0(Q )

i+j=r-1
Q- QY D... ®QI)(Q- ) DO )D...®(Q¥
in view of (Q})° =(Q%° =1 for i, j < 0. Using
(@) <..<(@-y), @)<..<(@ry)
we obtain

(D QIQff=(Q- ) 1D(Q-) Q) ®... DI (Q-r BIQF )

i+j=r

which completes the proof of Lemma 2. »
Note that the formula

(P10, ®P,0,,1®.. ®P,0)=PI®F_,01D.. P 0, ®IQ;
isa speéial case. The extension to higher dimensions is given in the following

THEOREM 5. The equality

( @& ¢,.0)= D +l(Qa’1)°--~(Q§',,)°

g +..+ig=r iy +..+ig=r—d
is valid.

We apply an induction argument. In view of Lemma 2 the theorem is
true for d = 2. Note that

Qra= @ Qi.d—lQ}',,

i+ig=r
and
Qia-1 < Qivra-1 (i§9’),
Qia-1=0 (i <0),
Qia-1=1 (i2(s+1)d-1).

We may apply Lemma 2 and obtain

@QJ = & l(Q:,.z-1)°(Q?',,)°

i+id=r—

= @ (@ (@@

itig=r—1 Iy +.. . +ig_1=i+2-d

= @ ® (Q1,) - () (Q))

l+ld='—l il+...+i‘_l=f+2'—d

= @ (@) .0y s

i1 +..tig=r-—-d+1
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Taking into account that (Qj)° are chains it can be shown that

( @ 0,..0)= © Q@)

ip .. tig=r i1+...+id=r"d+
0<iySr+1-d
which indicates that (B, ;) has a greater combinatorial complexity than B, ,.
Using this formula it can be proved by induction on d that the
remainder projector I —B,, has the explicit sum representation

I-B,,
S g j-1 (h—1 Y1 Vh
SN (o ) T (PLY.(PRY
j=1h=j gy <Tansdiy +otiy =r-d+j ! k

Byy 2 Loedy, 21
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