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Introduction

This paper is a survey of the results of a study of the exceptional sets
naturally associated with the two special function spaces, the Besov spaces
A2 and the Triebel-Lizorkin spaces F24, a > 0, p, g > 0, over n-dimensional
Euclidean space R". These exceptional sets (subsets of R") arise as in [S] as
the exceptional sets for a perfect functional completion, i.e. the sets up to
which pointwise statements about the functions of the class can be made. In
particular, it is the limit of the averages of these functions over balls (as the
balls shrink to their common center) that exists in an almost everywhere
sense which defines these classes; they are the sets where the limits may fail
to exist. An equivalent method of defining these classes is as null sets of
certain set functions on R" — capacities. In this article, these capacities are
referred to as Besov capacities and Triebel-Lizorkin capacities, respectively.

Results concerning these null sets have appeared over the years by many
authors. Most are concerned with various special cases related to their
particular problem. But because these spaces depend on three indices, it
seems like a good idea to consider the general case and sort out the various
relations among these classes of exceptional sets and especially to determine
how they are related to the null sets for the more traditional Hausdorff
measures. This we refer to as the classification problem.

Much of the work involving these classes, at least in the more exotic
cases, comes from questions in differentiation theory and approximation
theory. For example, the reader might consult [3], [16], [19], [21] or any of
the sources referred to in these papers. Of course, the case a =1, p=q =2
(in either the Besov or the Triebel-Lizorkin case!) is nothing more than the
classical, sets of Newtonian capacity zero. These have found many important
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applications in the theory of partial differential equations of the second
order, especially for linear elliptic equations.

In [3], the general case for the Besov spaces with three indices was
considered. There the idea was to represent a Besov function as a trace of a
Bessel potential. This is well known in the case g = p, but to use this idea
when g # p, it was necessary to replace the ordinary Bessel potentials (of [?
functions on R?") by Bessel potentials of functions that belong to the mixed
norm [?—[% class, i.e. [” on the first n-variables, and then [f on the
remaining n-variables. This approach was only partially successful. The
present approach seems to be much better, though several open questions
still remain — see IIl.11 for three of them.

Finally, I want to list three features of this article that the interested
reader might find especially interesting:

(1) The null sets for the Triebel-Lizorkin capacities do not depend on g,
at least for p,qg>1;

(2) The exceptional sets for AZP agree with those for FP2 p > 1;

(3) In order to produce the results on A2? exceptional sets, it was found
very useful to have an alternate (pointwise) description of a Besov function.
Such a new representation is given in II1.2, and as a consequence, the
“nonlinear potentials” — in the sense of Hedberg—Wolff — are determined
for the Besov spaces in II14.

I. Capacity

The term capacity will be used for any non-negative set function that is
monotone and finite on compact subsets of R". For a collection of capacities,
there is a natural partial ordering:

(1.1)  cap,(-) <cap,(:) iff cap,(K) =0 whenever cap,(K) =0.

These partial orderings are sometimes also referred to as “relations” among
the capacities in the collection. Here and throughout, the symbol K is used
to represent a compact subset of R". The equivalence relation corresponding
to < will be denoted by =x. The classification problem (cp) for such a
collection is to determine all such partial orderings (and hence all equival-
ences) within the collection. The extended classification problem is to do the
same for the enlarged collection obtained by including the Hausdorff capac-
ities H". Here, for h = h(t) a monotone increasing function of ¢ > 0 with
h(0) =0, we set

(1.2) H*K) = inf¥ h(r)
i

where the infimum is over all countable coverings of K by balls; r; denotes
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the radius of the jth ball of such a cover. Below we shall use B(x, r) to
denote a ball centered at x eR" of radius r > 0. It should be recalled that
although Hausdorff h-measure (see eg. [8]) is not a capacity in our sense, it
does have the same null sets as H".

The capacities considered in this note are those generated by the Besov
spaces A0 on R" and by the Triebel-Lizorkin spaces F24 on R", 0 < a < o0,
0<p <o, 0<q< 0. Using the standard terminology (e.g. S, §' for the
Schwartz spaces of C® rapidly decreasing functions on R" and its dual space,
S, the subspace of S consisting of ¢ for which the Fourier transform ¢ has
support disjoint from the origin, S (@) = support of ¢), the spaces A2? and
F™ can be defined as follows. Let @ €S, with S(®) B(O 2) and 43(5) =1
on B(0, 1). Setting ¢, =@ and ¢, (&) =P *E—D27**1¢), for k an
integer = 1, one has for q < =0,

a
At = UES: fulypy = [kZO(T"IIka sull)]"* < o0},

O
F2t = ueS' llullpg =[I[ X (2*lon+u( )0, < o}
k=0

Here ||-||, denotes the usual I norm/quasi-norm on R", 0 < p < oo. The
usual changes are made for ¢ = 0. Many of the properties of A?¢ and F?*
- needed in this note can be found in [22] or in [17]. For example, it is known
that S is dense in both 429 and F?, and that the topologies are independent
of the choice of &. Also F2'2 coincides with the class {G, = f: feh?), 0 <p
- < 0, and in particular with |G, * f: f€h?], 1 <p < co. Here h” is the local
Hardy space |f€S’: supo<, < W¥,*xfleLl?), V€S, Y, (x) =t""Y(x/1), t >0,
G (&) = (1+]¢)%)~ %2, » denotes convolution over R". Clearly, FP'P = APP,
Perhaps a more familiar definition of 429, 1 < p, g < oo, is via differences:
ueAP iff uel” and Wd, ,, < %;

(1.3) <u>a,p,q — (j’ [ “ |A';:u(x)|"dx:|“/p|h|_"q—"dh}”",
R" R"

for 0 <x <k, k.= positive integer, 4ju(x) = u(x+h)—u(x), 4% = AL 41,
Also ||, ,, is comparable to ||‘||,+ <), ,, Here and throughout, the term
comparable (symbolically: ~) is used between two quantities when their
ratio is bounded above and below by positive finite quantities independent of
the critical parameters. Finally, there are the dual spaces (AP9)* = AP'%,
especially for « > 0; here 1 < p, g < o0, and p' = p/(p—1). Similarly, (F9)*
= Fr'a’

Sometimes it is simpler, because of the homogeneity, to use the homoge-
neous spaces A4 and F?9. These are defined by simply modifying the
corresponding norms/quasi-norms by extending the sums in those norms/
quasi-norms over all integers. k rather than just over the non-negative
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integers; for this, we take ¢, (&) = #(27%&)— B (2751 ¢) for all k, and identify
functions/distributions that differ by a polynomial. The important point to
keep in mind, however, is that elements in the spaces F and A have the same
basic local behavior as those in F and A; they can be made to agree up to a
C* function — see [17] and [22]. In fact, an equivalent semi-norm on A2 is
(apqs and AP = APIATP.

Additional notation:

I f(x) = [Ix=yI*""f () dy,
and _
M,f(x)=supt*™" [ f(»dy; O<a<n.
>0 B(x.t)

M* (K) = non-negative Radon measures with support in K; ue M* (K), ||ull,
= total mass of u. And generally the superscript “+” denotes the non-
negative elements in a class (the “positive cone”).

Now with X = A2% or FP4 0 <a <o, 0<p,q<o0, and ||']ly the
corresponding norm/quasi-norm, we set

(1.4) cap(K; X) = inf {||ul%: ueS & u>1 on K}.

Note that because of the continuous embedding of X into the space of
bounded continuous functions when ap >n, we easily have for xeKk,
1 < Ju(x)| < cllully, for some constant c. Hence cap(K; X) # O unless K = Q,
in this case. (This also happens for cap(-; Ff% when ap=n, 0 < p < 1, for
example.) Hence we may immediately restrict our attention at least to those
triples («, p, q) for which ap < n. Also, since the spaces X are locally convex
when 1 < p, g < o0, the minimax theorem applies (see e.g. [14]) and yields
the following alternate characterization:

(1.5) cap(K; X)'/? = sup||ul,,

where the supremum is over all peM™ (K) n X* for which ||ul|x < 1.

In order to get an initial handle on the (cp) for these capacities, it is
useful to compute the Hausdorff dimension of cap(-; X). By this we shall
mean the number d, 0 <d < n, such that

(1.6) H*® <cap(-; X) < H "¢

for all 0 <e<d. Here HY now denotes H* with h(t) =1t!. Setting d
= dimcap(-; X) and n—d = codimcap(-; X), we easily have that (1.7) im-
plies (1.8), where

(1.7) codimcap(-; X,) <codimcap(-; X,)
and

(1.8) cap(-;: X;) <cap(-; X,).
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We understand that dimcap(-; X) =0 when cap(-; X) > H?, for all ¢ > 0.
We shall see that in most cases

(1.9) dimcap(-; X) =n—ap

when X = A”% or FP4. Also, from [14] this is well known for the spaces F2'2,
1 < p < o. In fact, it is easy to see that FP:2, — A»? c FP'2, for 0 <& <a.
Hence (1.9) holds for the Besov spaces, for 1 < p, g < oo. Thus for these
spaces, the (cp) is reduced to the study of capacities of the same dimensions.
This then is where the subtle role of the exponent g comes into play.
Finally, we should mention that whenever there is a continuous em-
bedding X, < X,, then cap(-; X,) <cap(-; X;). However, this is a poor
way to proceed since there are far more relations than there are embeddings.

II. Triebel-Lizorkin capacity

1. The Nilsson result

We begin with the rather remarkable fact that the null sets for the capacities
cap(-; FP9 are the same for all ¢, 1 <q < oo, at least for each « > 0 and 1
< p < oo. This observation was made by P. Nilsson in the Fall of 1983. To
do this, we show that the positive cone in F?:¥ is the same as the positive
cone in F?”:2. Consequently, (1.5) implies cap(-; F??) ~cap(-; FZ?),
l<g<o, 1 <p<oo,a>0. Thus in this case, the study of the Triebel
Lizorkin capacities reduces to the study of the FP2-capacities, i€. to the
Bessel capacities. These later capacities have been treated extensively in the
literature — see [13], [14], [4].
Our assertion about the positive cones follows from

THEOREM 2.1. If u is a Borel measure on R", then there are constants c,
and c, independent of u such that

(a) "u”—a,p'.q' < cl ”Ga * .u”p"
(b) ”Mal /"’”p' S C2 ”””—a,p’,q"

Here M} u(x) is the maximal function supg<,<;* "u(B(x, t)). The
result follows from the theorem by observing the following non-homogene-
ous version of the Muckenhoupt—-Wheeden result [15]: there is a constant c,
independent of u such that

.1) G *ully < c3lIMgplly, 1<p<oo.

From the well-known asymptotic behavior of G,, it is clear that the reverse
inequality to (2.1) trivially holds. Finally, notice that ||G, * u|,» is equivalent
to the F”;2-norm of pu.
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To see (a) of Theorem 2.1, write
Il < 2271 1 C)I)] -
k

Then with  (¢) = & (£)— D (2¢), note that
Y 2Ry (2 x) = T *G,(x)

k20

where J is a bounded operator on I”. Consequently,
(22) ”.u”—a.p',q' < ”J * Ga *”’”p’ Sc ”Ga *#”p"

For part (b), we use the characterizations of the F-spaces by “ball means
of differences” as given in [22], p. 108. However, for simplicity we focus our
attention here on the homogeneous case and note that there is a constant ¢
= c(p) such that if a # positive integer and 2f—2 < a < 28, for B = positive
integer, then -

cg*~ % ,ngh (T2 * W) (x)- A* ¥ (—hydh = g* (2% Vop* u(x) = 2%, + u(x)},
for Y eC§(R"), S(¥) = B(0, 2), ¥(x) =1, |x] < 1. 4% denotes the fth power
of the n-dimensional Laplacians. Thus, one easily gets
(23) ”Ma #”p' < c”IZﬂ *l‘”i‘

where the F-norm is for F’z’;,'"_'a. Finally, for integral a, one just uses the
semigroup property of I,.

2. The case p=1,g=2

Again for simplicity, we will just consider the homogeneous case. Now F}:2
= G, H', H' = classical real Hardy space on R". The dual of H! is BMO
= space of functions of bounded mean oscillation. But I, *ueBMO iff
M, ueL™ (see [2]) and hence by Frostman’s theorem (see [7], Chapter 2), we
get

(2.4) cap(-; F) =~ H"*, O<a<n.

3. The case O <p<1, g=2

Here the duality approach does not work, since the Hardy spaces H” are not
locally convex. The idea then is to use the atomic decomposition of H? to
work directly with the definition of cap(-; F??), 0 <a <n/p, 0 < p < 1. This
yields the following result which gives, as a consequence, the lower bound

(2.5) H" P <cap(-; F?).
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THEOREM 2.2. There is a constant c¢ such that for all f e H?(R"),
(2.6) fUG*xN)*1PdH* < c|IfII5,, O <a<n/p,0<p<l.
h(r)y=r**""for 0<r< 1, and r" for r > 1.

Here F* refers to the non-tangential maximal function sup|e, *x F(y)|
where the supremum is over all yeR" and ¢ > 0 such that |x—y| <e. Also,
the integral in (2.6) should be understood in the sense of Choquet, i.e.

[FPdH = [H{F > A}da”.
(]

The proof of (2.6) follows closely the ideas contained in [12], at least in
estimating

fGa* f)*)Pdp,

where p is any Borel measure for which u(B(x, r)) < (constant)- h(r), for all
r>0 and all xeR" The passage from such measures to H" follows from:

THEOREM 2.3. The integral j'(de", for all lower semicontinuous ¢ = 0, is
comparable to : sup [@dy, where the supremum is over all Borel measures p
such that |||ulll, < 1, where
(2.7) il = SUpoh(r)“/l(B (x, 1))

This theorem can be viewed as an extension of the result of Frostman
quoted earlier: H*(K) > 0 iff there is a Borel measure u with S(u) = K and
fllulily, < 0. (See reference [23].)

An upper bound on cap(-; F??), 0 <a <n/p, 0 <p <1, is somewhat
harder to obtain. Again the idea has been to exploit the atomic decomposi-
tion of H?; however, no real satisfactory result is yet known. The obvious
conjecture — and one that is satisfied for many examples — is that all of the
capacities cap(-; F??), for 0 <a <n/p, 0 <p <1, are bounded above by a
multiple of the (n—ap)-dimensional Minkowski content, M,_,,, of Section
II1.9 below. (Some partial results of this type have recently been obtained by
J. Orobitg at Universitat Autonoma, Barcelona.)

I11. Besov capacity

1. The positive cone in the dual space

Using ideas due to J. Peetre [18] and J. Polking [20], one can prove the
following lemma that leads to a useful characterization of the positive cone
in A% >0, 1<p<oo, 1<q<oo.
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LemMMA 3.1. Let €8, a >0, 1 <p, q < oo, then there is a constant c
independent of u such that

1 de | e
(31) {_"(81 ”Xt: * u“p)q —8—} s CIXIa,l,l : |u|—¢,p.q'
o P

If, in addition, y is nonnegative and radially decreasing, then the quantity on
the left side of (3.1) is a comparable norm for (A»%)*. The homogeneous version

of 3.1) is
© de )l

(31), {I(sﬂ”Xe *u”p)q—‘“} Sc <x>¢,l,l : <u>—a.p.q'
o v &

By taking an appropriate y in Lemma 3.1, we have that

(32) {}(g le="u(B(, s))ll,f)"d—s}w

is an equivalent norm on ue(A?¥)*, a >0, l<p <o, 1 €£q<o. But
upon noting that

[l (B, 5 ~ &” fu(B(y, Se)f"~* du(y),

where 6 = 2 for the upper bound and & = 4 for the lower bound, we are led
to

THEOREM 3.2. For >0, 1 <p < 0, pe(A”:9)" iff

1 - , ,d
(33) Epa) =] [.‘(tap—"ﬂ(B (x, t)))p “ldu (x)]q e Tt
V]
is finite, 1 < q < o0, and
(34) Eepa(W) = sup f(e"u(Blx, )~ du()

is finite, ¢ = 1. Furthermore, E,_p_,,(-)”“ is an equivalent norm on the positive
cone. (Here E stands for “generalized energy.”)
2. A characterization of A2, o >0

Using Lemma 3.1, we can also give a new characterization of ARY as
“almost” potentials. First consider ueAP9. If we set

f(x,)=|t| *4*u(x), O<a<keZ*, x,teR",

then clearly

l/q
{fuf(, ol } = Wape

[t "
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Now for @ €S, set
S = H(P( )f(y, Ole*=2"dydt = [ @y » f*(x)e* " dt

where f*(y) = f(y, t). Then there is a constant ¢ independent of u such that
S, f(&) = c-i(f). Hence S, f(x)=c-u(x), for ueS,. The next result is the
converse.

THeoreM 3.3. If f: R*" =R is such that

then S, f €AP and there is a constant c¢ such that

1/a
Sef depa < {juf( t)u,,m,} . 1<p<o,1<g<o.

Thus ueAg,"" iff u=S,f for some f satisfying (3.5).

The proof of this result follows by duality and Lemma 3.1. For u A2,
we have u = S, f where '

(3-6) S.f(x) = prnf'(x) t"

and f*(y) = f(y, t) is now defined on R" x[0, 1] and satisfies

1 d
(3.7 JILF (- Dl < oo
0

3. An equivalent Besov capacity

Using these S-potentials, we can easily formulate a definition of capacity
which together with its dual will be equivalent to cap(-; A?'9). We take

1 dt \Pl1
(3.8) inf{(jllf(-, t)m’T) :f20&S,f21 on K}
. 0

and a dual formulation

(39 sup {llull;: peM* (K)& E, o () < 1}

The equality of (3.8) and the pth power of (3.9) follows from the minimax
theorem in the standard way (see e.g. [14]), and because of Theorem 3.2,
both are equivalent to cap(-; A29; a >0, 1 <p<oo, 1 g <.

2 — Banach Center t. 22
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4. Nonlinear Besov potentials

We are thus motivated to use the following equivalent norms for 42 and
A7:% (but retaining the old notation for simplicity):

! dt\'/a
(3.10) Sz fla,p.q = (,[Ilf (N t)ll‘,',T)
0

1 Lde\/e
(3.11) M- e = (g (==l (B, D) ]¢ 7> :

With this, we choose fx and ug to be extremals for (3.8) and its dual capacity
(the same as (3.9) except that (3.11) is used in place of the equivalent energy
formulation). Then as in [14], these two elements are closely related and in
our case, we get that S, fy(x) is comparable to '

612 J[Er (B O ([ (B, o) vy 1

o t

Here v is normalized ug, normalized so that S, fx, which is bounded on
S (uk), will have a bound there independent of the set K. Formula (3.12) —
with upper endpoint of integration equal to one — defines the Besov space
analogue of the nonlinear potentials associated with the Besov capacities.
For the Bessel capacities cap(-; F?2), the similar role is played by (3.12) with
q = p; see [9]. In fact, it is just this observation — that both (4737)* and
(FP:2)* are characterized by (3.12) with ¢ = p — that implies the equivalence
of cap(-; AP'P) and cap(-; FP'?); a >0, 1 <p <oo. Of course, we already
know this from Theorem 2.1 since A?? = FPP,

5. Partial orderings via energy estimates

If we denote the nonlinear potential given in (3.12) by W., (x), then the
following energy estimates hold.
(i) Estimates valid for any codimension < n:
~ (a) if ap = Br, q'/p =s'/r, r < p, then
(3.13) Eppg() < Eg () llullf %,
(b) if ap = Br, q/p = s/r, p < r, then there is a constant ¢ independent of
u such that

(3.14) E,po() S c Ep, () [sup W, (x))/P -

xeS{u)

(c) if g < s, then there is a ¢ independent of u such that
(3.15) EppaW' < Eqps()'.

(ii) Estimates valid for codimension n only:
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d if p/q-r/s <o, 6 =(s-1)(r—p/(p—1)(r—1), s<r, p<r, then
there is a constant ¢ such that
(3 16) En/p, pP.q (p)p'/q’ S c: En/r,r.s (u)r'/s’ [ sup wn7r.r,s (x)]a.

xeS(p)

(In estimates (3.13)(3.16), it may be necessary to interpret one or more of the
energy functions appearing in an upper bound to involve integration over
the interval (0, 2) rather than the customary (0, 1).)

Now to deduce partial ordering from these energy estimates, we need

THEOREM 34. If cap(K; A?) >0, a >0, 1 <p<o0, 1 <q <00, then
there exists a Borel measure u such that

(3.17) peM?* (K) n(AZ5)*
and
(3.18) Wiip.q(x) is bounded on S,,.

'We summarize the results below with diagrams. The X represents the
capacity cap(K; 429 which we are assuming to be zero. The shaded region,
including the - solid lines with arrows represents possible capacities
cap(K; A3°) which must necessarily be zero as a consequence.

For ap = pr = n:

f
1/511 (@ 1/s
; .
X 4 Ve
2% ‘: 2 9 (a),/’/ % ////
S e %,
. 0.0.0 ¢ » ¢ ) o SOOOK
R e I {a)
:::": 0% X ? 2 %
020" v "
oS retete%s? S o
Sotets i‘:: &S X E EE 60 2
0 1 0 Y

A
1/
s 7 1/s X (a)

s .

2
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(b) R
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p2ee e lel
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o

o
oetetetetetelete
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! /
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Later, using estimates in terms of Hausdorff capacity, we will improve these
diagrams, at least the codimension n diagrams, by showing that we may
shade in the entire region below the line r/s’ = p/q'’.

6. Besov capacity of a ball
Here we discuss the calculation
cap(B(x,t); 429, a>0,1<p<nfa,1<q<o.
To do this, we note that cap(K; A>9%? is comparable to
(3.19) sup {llull,: peM* (K) & W, <1 on S(w)}.

Also there is a universal constant M such that cap(K; A29)%? is comparable
to

(3200 inf{lul;: peM* (K) & W, >1 on K & W!,, <M on S(w)}.

With these we need only take u to be a constant multiple of Lebesgue
measure restricted to the ball to prove

THEOREM 3.5. As t =0,
thTp, ap <n,
. P4}
(3.21) cap(B(x, t); AL ) {(log 10?7,  ap=n.

7. HausdorfI capacity vs. Besov capacity

Now when the Besov capacity is countably subadditive, we can use (3.21) to
obtain an upper bound in terms of H" where h = h(t) is either of the two
measure functions appearing in (3.21). However, countable subadditivity is
only known in the case p < ¢. The present section is an attempt to give some
Hausdorff capacity upper bound when g < p. The key is to investigate the
relationship between the Besov capacity and the capacity corresponding to
the class DZ; given below. As in (3.6), form the operator (6 > 0)

172 dt
Sesf(x) = | @ f'(x) t*(log l/t)"’—t—,

0

and then with D2, = {S,,f: fel’(R"x[0, $])}, the capacity cap(-; D?,)
has the properties:

(322 cap(-; A2%) <cap(-; DZ,), for 1/g—1/p <6, ap<n;

(3.23) cap(B(x, t); D%;) is comparable to t"~*?(log 1/t) as t =0, for
ap <n, and is comparable to (log1/)’*"?*! as t =0, for ap
- n;

(3.24) cap(-; D%,) is countably subadditive.
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With these properties, we easily have
THEOREM 3.6. For a >0, 1 <p<nfa, 1 <q < o0,
(3.25) cap(-; 429 < H*
where (i) if ap <n
h(t)=t""*, p<gq
=" (log 1/t)"""1*¢, g <p, e>0,
and (ii) if ap=n
h(t) = (log 1/t)™7%, p<gq
=(logl/t)"P¥*, g<p, €>0.

Notice that with this result, we can shade in the lower portion p/q’ < r/s’
in our figures illustrating the codimension n case. This is because it is well
known (see [4]) that cap(-; B%?) < H", for h(t) = (log 1/t)* =", r > p. Thus we
have:

THeEOREM 3.7. cap(-; Ay;) <cap(-; A%]) whenever (1) p/q’ <r/s' or (2)
p/qd =r/s’ and r < p.

Also, there is the following lower bound:
THeEOREM 38. For 1 <p <nfa, H" °? < cap(-; AP?).

This follows from (3.9) and (3.4), and the often-quoted theorem of
Frostman.

8. Besov capacity of Cantor-type sets

To see that the region above the line r/s’ = p/q’ in our diagrams cannot
generally be shaded in as well, we compute the Besov capacity of a Cantor-
type set. Let |/} be a sequence of positive numbers that satisfy |, —2[,_; > 0,
k=1,2,3,..., lp=1, and set E, equal to the union of the 2* intervals
remaining in the interval [0, 1] after open middle intervals of length I, are
removed from E,_,. E, =[0, 1]. Set E =\, Ef, the intersection of the
products E} = E, x ... xE,. Now following the ideas of Carleson [7] and
Besicovitch-Taylor [6], we have

THeoREM 3.9.

(@) HY(E) ~liminf2™1¢, 0<d<n;
k=
(ii) cap(E; APY) ~ liminf2™ [j~°P, ap <n;

k-
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(iii) cap(E; A2 ~ [2(2""'1,‘,”’_")"7”]_"/“', ap <n, q>1;
k

(iv) cap(E; A29) ~ [T {(log (h/l+)P'" 2" ™}4/P]~Pd g > 1.
k

9. Minkowski content and Besov capacity

Here, we record a relationship between the Besov capacities and the finite-
ness of the set function

(3.26) M,;(K) = liminfe? " "|K,|,

e—0

the lower Minkowski content of K. Here K, = e-neighborhood of K. An
equivalent version of M, is the set function

(3.27) S4(K) =liminf N (¢; K) &,

£—-0

where N (¢; K) is the minimum number of open balls of radius ¢ > 0 needed
to cover K.

THeoREM 3.10. For 1 <p <nfa,q > 1, M,_,,(K) < oo implies
cap(K;A2%) = 0.

This result follows by considering the Besov capacity in mn-dimensions
of the product set K x... xK, K < R" In fact, we can use the minimax
theorem to show

(3.28) [cap(K; A2*(RM)]™ < cap(K x ....xK; AZ?(R™),

when mp’ = ¢q'. The capacity on the right side of (3.28) is an equivalent Bessel
capacity which is zero when the standard Hausdorff measure of dimension
m(n—ap) in R™ of the product is finite (see [14]). Thus the conclusion
follows by noting that §,_,,(K)™ exceeds this Hausdorfl measure.

Note that if we used the corresponding Minkowski capacity, $¢(K)
=inf,,, N(e; K)&?, which is always finite, then one easily gets the estimate:
cap(-; A>9) < S"7%P(-), ap <n, g > 1.

10. The case p< 1
l-_lere we have
(3.29) H" P <cap(-; AZP)

for 0 <p <1, n(1/p—1) < a < n/p. This follows from the trace theorems for
the Besov spaces — see [10], [11]. In particular, on subsets of R"

cap(+; AZ7(R") = cap(; Fi,,(R™) < H""*,
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for 0 < p <1, a > n/p—n. The last implication follows from (2.5). Also from
(24) we have

cap(-; Ay~ H"*, O<a<n.

11. Open questions

Several obvious questions remain.

(i) The dimension d-diagram, d > 0, appears to be far from complete —
certainly less so that the d = 0 diagram. So what should the diagram look
like, or rather what are the possibilities? For instance, if all of the capacities
in the region marked with a +, in the diagram below, are positive on some
given set while those in the region marked with a 0 are zero, then what are
the possibilities for regions @ and @®? When d =0 our theory plus the
Cantor construction implies that the only possibility is that the capacities of
region @ are zero and those of region @ are positive. Does this also remain
true for d > 0?

Q=
- B

ol

(i) Does the relation 'cap(-; APP) = cap(-; F2'P) persist for 0 <p < 1?
(ili) What can be said about cap(-; 429 for 0<p <1, 0<g<x?
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