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ON MAPS WHICH ARE PERFECT
WITH RESPECT TO THE HEWITT REALCOMPACT EXTENSION

BY

A. BLASZCZYK (KATOWICE)

The aim of this paper is to give a characterization of maps of a Tycho-
noff space which induce on the Hewitt rcalcompact extension maps carrying
the remainder into the remainder. In the case of the Cech-Stone compac-
tification and of the Katétov extension such characterizations are known.
We give a generalization of a theorem of Dykes [1] on preimages of
realcompact spaces.

All spaces are assumed to be Tychonoff and all maps are assumed
to be continuous.

1. Preliminaries. A space X is realcompact iff it is a closed subspace
of the product of copies of the real line.

The Hewitt realcompact extension vx: X < vX is a dense embedding
of X into a realcompact space, characterized (up to homeomorphism)
by the following condition (Hewitt [5]):

(1) for each f: X - Y, where Y is a realcompact space, there exists
exactly one continuous map f : »X - Y completing the diagram

X c»X
fl ‘//;
Y

From (1) it follows immediately that for each f: X — Y (Y need
not be here realcompact) there exists exactly one continuous map »f:
vX — vY completing the diagram

X crX
(2) 1

¥

YcrvY
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A map f: X - Y will be said to be »-perfect provided the map »f:
vX —»Y carries the remainder into the remainder, i. e., »f(»X\X) c vY\Y
(in analogy to those maps in the diagram of the Cech-Stone compact-
ification which behave in the same way and usually are called perfect;
cf. Henriksen and Isbell [4]).

Clearly, if f: X - Y is a v-perfect map and Y is realcompact, then
X is realcompact. Indeed, by condition (1), a space is realcompact iff
the remainder of the Hewitt realcompact extension is empty.

For every X, the Hewitt realcompact extension vX can be constructed
as a subspace of the Cech-Stone compactification fX. Namely, »X is
equal to the intersection of the family of all sets F~'(E), where F:
BX — ol (wF denotes here the one-point Alexandroff compactification of
the real line F) is the extension of a map f: X - F (cf. Hewitt [5] or
Engelking [2], p. 156). By a slight modification of the argument, we infer
that »X equals pX without all zero-sets, with respect to X, contained
in X\ X.

A filter is a 2-filter provided it consists of zero-sets; it is said to be
a z-ultrafilter if it is maximal in the family of all z-filters. We say that
a z-filter § has the countable intersection property (c. 1. p.) if each countable
subfamily of & has a non-empty intersection. It is known (cf. Hewitt [5]
or Engelking [2], p. 155) that a space X is realcompact iff every z-ultra-
filter in X with the c. i. p. has a non-empty intersection. Let § be a z-
-ultrafilter in X. A point ze X is a limit in X of § provided {z} = (M{Clx4:
Ae$F}. A point ye X is a limit in BX of a z-ultrafilter § provided {y}
= ({Clyx4d: A}

The following theorem describes the Hewitt realcompact extension
in terms of z-ultrafilters:

THEOREM 1 (Gillman and Jerison [3], p. 118). Every point in vX 18
the limit in BX of a unique z-ultrafilier in X with the c. 1. p. Conversely,
the limit in BX of any z-ultrafiller in X with the c. t. p. belongs to vX.

Proof. 1. It suffices to consider only points of the remainder of
vX. Let xge v X\ X. The family

(3) F(®wy) ={Z N X: Z is a zero-set in X and wz,e Z}

is a z-ultrafilter in X. Indeed, by the remark on »X as X without zero-
sets, every zero-set which contains z, meets X. Since an intersection of
a countable family of zero-sets is a zero-set, §(xz,) has the c. i. p. Clearly,
20eClyx(Z N X) for every zero-set Z in X such that x,e Z. Thus z, is
the limit of § in fX. Uniqueness is obvious.

2. Clearly, every z-ultrafilter has the limit in fX. It remains to
prove that it belongs to »X if it has the c. i. p. Let § be such a z-ultrafilter
and let {z,} = (){Cly;xZ: Z€F}. Suppose that x,¢ »X. Then there exists
a function f: X — I such that f(z,) = 0 and f(x) > 0 for each z¢»X.
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Clearly, Z, = f~([0, 1/n]) N X belongs to & for every integer n =1, 2, ...
But (M Z, =9; a contradiction.

n=1

2. v-perfect maps. Let us note that each perfect map f: X — Y is
v-perfect. In fact, there exists, by (2), an extension »f: vX — »Y. Since
X cvX < X, BX is equal (up to a homeomorphism) to the Cech-
Stone compactification of the Hewitt realcompact extension »X. Then
there exists a map gf: fX — BY being an extension of »f. Since f is perfect,
Bf(BXNX) c pY\Y. Thus »f(»X\X)c»Y\Y which means that f
is »-perfect.

THEOREM 2. A map f: X 222, Y is v-perfect iff

(4) for each ye Y and for each z-ulirafilier & with the c. i. p. and emply
intersection, there exists a Zey such that the set f(Z) is closed and
Znfly) =0.

Proof. 1. Let us assume that condition (4) holds. Then there exists
the map »f: vX - »Y completing diagram (2). It suffices to show that
»f(»X\X) c vY\Y. Suppose there exists & point z,e »X\X such that
»f(z,) = ye Y. By Theorem 1, the family &(x,), defined by (3), is a 2-
-ultrafilter with the c. i. p. and empty intersection. Hence, by (4), there
exists Ze F(x,) such that f(Z) is closed and f~'(y) N Z = . Consider the
set V = Y\f(Z). Clearly, V is an open neighbourhood of y. Then there
exists the set W < »Y which is open in vY and such that Wn 'Y =7V,
Since (vf)~!(W) is an open neighbourhood of x,, there exists a continuous
function ¢g: X - I such that g(z,) =0 and g(x) =1 for z¢ (vf)~'(W).
Observe that Z, = X N g~!(0) belongs to §(x,) and Z, = X N (»f)"(W).
But we have

#))HW) N X =fY(V) =fHTNf(2)) = INf(f(2)) = XN\Z,

whence Z NZ, =0; a contradiction.

2. Now assume that the map f: X - Y is »-perfect. Let § be an
arbitrary z-ultrafilter with the c¢. i. p. and empty intersection, and let
ye Y. By Theorem 1, ({Cl;xZ: Z¢&} = {z,} and x,¢vX\X. Since f
is_v-perfect, ¥ # vf(z,). Hence there exists a function k: »Y — I such
that k(y) =1 and h(vf(z,)) = 0. Consider the composition ¢ = kof and
the set Z = X N ¢~'(0). Clearly, Z is a zero-set and, by Theorem 1, Z¢J.
It is easy to see that Z N f~'(y) = @ and f(Z) is closed in Y. In fact,

£(2) = f(()7* (r71(0)) N X) = of (o) (A72(0)) 0 X) =7} (0) N X.

Thus condition (4) holds.

A map f: X — Y is said to be a Z-map if the image under f of each
zero-set in X is closed in Y. A map f is a WZ-map if (8f)~'(y) = Clyxf~(y)
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for every ye Y, where ff: X — Y is an extension of f. Isiwata [6] has
shown that all Z-maps are WZ-maps.

onto

THEOREM 3. If a map f: X 2> Y is a WZ-map and f~'(y) is closed.
in vX for each ye Y, then f is v-perfect.

Proof. Suppose, on the contrary, that there exists a point x,e v X\ X
such that »f(x,) = ye Y. Clearly, gf: X — BY is an extension of »f.
Then Bf(x,) = y. Since f~'(y) is closed in »X, x,¢ Clyxf'(y). But f is
a WZ-map, hence ff(x,) # y; a contradiction.

Note. The converse of Theorem 3 is not true. In fact, if X is real-
compact, then each map f: X — Y is »-perfect. Clearly, such a map is
not, in general, a WZ-map. For example, if ¥ is the real line, A = {z,} VU
U (BEN\E), where x,¢ F, and ¢: E — SE[A is the natural map, then
the restriction ¢ | E: E — BE[A is v-perfect but not a WZ-map.

CorOLLARY (Dykes [1]). If f: X =25 Y is a WZ-map onto a real-
compact space and f~'(y) is closed in vX for each ye Y, then X 48 real-
compact.

Proof. The remainder of vY is empty. By Theorem 3, »f(»X\X)
< »Y\ Y. Hence the remainder of »X is empty.

Clearly, if f: X — Y is a map onto a realcompact space Y, then X is
realcompact iff f is »-perfect. Hence Theorem 2 can be considered as the
final result on preimages of realcompact spaces. This result is actually
a generalization of that of N. Dykes. The following theorem gives a cri-
terion for a map to be »-perfect.

THEOREM 4. If a Z-map f: X — Y is onto and f~'(y) is Lindeldf for
each ye Y, then f is v-perfect.

Proof. We shall show that condition (4) holds. Suppose, on the
contrary, that there exist ye¢ Y and a z-ultrafilter § with the c. i. p. and
empty intersection such that, for each Ze,Z N f~!(y) #@. Note that
the family {Z N f~Y(y): Z<F} is a #filter with the ¢. i. p. in f~'(y). In
fact, & is closed with respect of countable intersections. Since f~*(y) is
Lindelof, M{Z N f~(y): Ze F} # 9. Thus § has a non-empty intersection ;
a contradiction.

Note. Easy examples show that the converse is not true.
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