VOL. XXVII 1973 FASC. 1

ON MAPS WHICH ARE PERFECT WITH RESPECT TO THE HEWITT REALCOMPACT EXTENSION

 \mathbf{BY}

A. BŁASZCZYK (KATOWICE)

The aim of this paper is to give a characterization of maps of a Tychonoff space which induce on the Hewitt realcompact extension maps carrying the remainder into the remainder. In the case of the Čech-Stone compactification and of the Katětov extension such characterizations are known. We give a generalization of a theorem of Dykes [1] on preimages of realcompact spaces.

All spaces are assumed to be Tychonoff and all maps are assumed to be continuous.

1. Preliminaries. A space X is realcompact iff it is a closed subspace of the product of copies of the real line.

The Hewitt real compact extension v_X : $X \subset vX$ is a dense embedding of X into a real compact space, characterized (up to homeomorphism) by the following condition (Hewitt [5]):

(1) for each $f: X \to Y$, where Y is a realcompact space, there exists exactly one continuous map $\tilde{f}: \nu X \to Y$ completing the diagram

From (1) it follows immediately that for each $f: X \to Y$ (Y need not be here realcompact) there exists exactly one continuous map $\nu f: \nu X \to \nu Y$ completing the diagram

$$(2) \qquad \begin{array}{c} X \subset \nu X \\ f \downarrow & \nu f \\ Y \subset \nu Y \end{array}$$

A map $f: X \to Y$ will be said to be v-perfect provided the map $vf: vX \to vY$ carries the remainder into the remainder, i. e., $vf(vX \setminus X) \subset vY \setminus Y$ (in analogy to those maps in the diagram of the Čech-Stone compactification which behave in the same way and usually are called perfect; cf. Henriksen and Isbell [4]).

Clearly, if $f: X \to Y$ is a ν -perfect map and Y is realcompact, then X is realcompact. Indeed, by condition (1), a space is realcompact iff the remainder of the Hewitt realcompact extension is empty.

For every X, the Hewitt realcompact extension νX can be constructed as a subspace of the Čech-Stone compactification βX . Namely, νX is equal to the intersection of the family of all sets $F^{-1}(E)$, where $F: \beta X \to \omega E$ (ωE denotes here the one-point Alexandroff compactification of the real line E) is the extension of a map $f: X \to E$ (cf. Hewitt [5] or Engelking [2], p. 156). By a slight modification of the argument, we infer that νX equals βX without all zero-sets, with respect to βX , contained in $\beta X \setminus X$.

A filter is a z-filter provided it consists of zero-sets; it is said to be a z-ultrafilter if it is maximal in the family of all z-filters. We say that a z-filter \mathcal{F} has the countable intersection property $(c.\ i.\ p.)$ if each countable subfamily of \mathcal{F} has a non-empty intersection. It is known (cf. Hewitt [5] or Engelking [2], p. 155) that a space X is realcompact iff every z-ultrafilter in X with the c. i. p. has a non-empty intersection. Let \mathcal{F} be a z-ultrafilter in X. A point $x \in X$ is a limit in X of \mathcal{F} provided $\{x\} = \bigcap \{Cl_X A: A \in \mathcal{F}\}$. A point $y \in \beta X$ is a limit in βX of a z-ultrafilter \mathcal{F} provided $\{y\} = \bigcap \{Cl_{\beta X} A: A \in \mathcal{F}\}$.

The following theorem describes the Hewitt realcompact extension in terms of z-ultrafilters:

THEOREM 1 (Gillman and Jerison [3], p. 118). Every point in νX is the limit in βX of a unique z-ultrafilter in X with the c. i. p. Conversely, the limit in βX of any z-ultrafilter in X with the c. i. p. belongs to νX .

Proof. 1. It suffices to consider only points of the remainder of νX . Let $x_0 \in \nu X \setminus X$. The family

(3)
$$\mathfrak{F}(x_0) = \{Z \cap X \colon Z \text{ is a zero-set in } \beta X \text{ and } x_0 \in Z\}$$

is a z-ultrafilter in X. Indeed, by the remark on νX as βX without zero-sets, every zero-set which contains x_0 meets X. Since an intersection of a countable family of zero-sets is a zero-set, $\mathfrak{F}(x_0)$ has the c. i. p. Clearly, $x_0 \in \operatorname{Cl}_{\beta X}(Z \cap X)$ for every zero-set Z in βX such that $x_0 \in Z$. Thus x_0 is the limit of \mathfrak{F} in βX . Uniqueness is obvious.

2. Clearly, every z-ultrafilter has the limit in βX . It remains to prove that it belongs to νX if it has the c. i. p. Let \mathfrak{F} be such a z-ultrafilter and let $\{x_0\} = \bigcap \{\operatorname{Cl}_{\beta X} Z \colon Z \in \mathfrak{F}\}$. Suppose that $x_0 \notin \nu X$. Then there exists a function $f \colon \beta X \to I$ such that $f(x_0) = 0$ and f(x) > 0 for each $x \in \nu X$.

Clearly, $Z_n = f^{-1}([0, 1/n]) \cap X$ belongs to \mathfrak{F} for every integer n = 1, 2, ...But $\bigcap_{n=1}^{\infty} Z_n = \emptyset$; a contradiction.

2. ν -perfect maps. Let us note that each perfect map $f: X \to Y$ is ν -perfect. In fact, there exists, by (2), an extension $\nu f: \nu X \to \nu Y$. Since $X \subset \nu X \subset \beta X$, βX is equal (up to a homeomorphism) to the Čech-Stone compactification of the Hewitt realcompact extension νX . Then there exists a map $\beta f: \beta X \to \beta Y$ being an extension of νf . Since f is perfect, $\beta f(\beta X \setminus X) \subset \beta Y \setminus Y$. Thus $\nu f(\nu X \setminus X) \subset \nu Y \setminus Y$ which means that f is ν -perfect.

THEOREM 2. A map $f: X \xrightarrow{\text{onto}} Y$ is v-perfect iff

(4) for each $y \in Y$ and for each z-ultrafilter \mathcal{F} with the c. i. p. and empty intersection, there exists a $Z \in \mathcal{F}$ such that the set f(Z) is closed and $Z \cap f^{-1}(y) = \emptyset$.

Proof. 1. Let us assume that condition (4) holds. Then there exists the map $\nu f\colon \nu X\to \nu Y$ completing diagram (2). It suffices to show that $\nu f(\nu X\setminus X)\subset \nu Y\setminus Y$. Suppose there exists a point $x_0\in \nu X\setminus X$ such that $\nu f(x_0)=y\in Y$. By Theorem 1, the family $\mathfrak{F}(x_0)$, defined by (3), is a z-ultrafilter with the c. i. p. and empty intersection. Hence, by (4), there exists $Z\in\mathfrak{F}(x_0)$ such that f(Z) is closed and $f^{-1}(y)\cap Z=\emptyset$. Consider the set $V=Y\setminus f(Z)$. Clearly, V is an open neighbourhood of y. Then there exists the set $W\subset \nu Y$ which is open in νY and such that $W\cap Y=V$. Since $(\nu f)^{-1}(W)$ is an open neighbourhood of x_0 , there exists a continuous function $g\colon X\to I$ such that $g(x_0)=0$ and g(x)=1 for $x\notin (\nu f)^{-1}(W)$. Observe that $Z_0=X\cap g^{-1}(0)$ belongs to $\mathfrak{F}(x_0)$ and $Z_0\subset X\cap (\nu f)^{-1}(W)$. But we have

$$(\nu f)^{-1}(W) \cap X = f^{-1}(V) = f^{-1}(Y \setminus f(Z)) = X \setminus f^{-1}(f(Z)) \subset X \setminus Z,$$

whence $Z \cap Z_0 = \emptyset$; a contradiction.

2. Now assume that the map $f: X \to Y$ is ν -perfect. Let \mathfrak{F} be an arbitrary z-ultrafilter with the c. i. p. and empty intersection, and let $y \in Y$. By Theorem 1, $\bigcap \{\operatorname{Cl}_{\beta X} Z \colon Z \in \mathfrak{F}\} = \{x_0\}$ and $x_0 \in \nu X \setminus X$. Since f is ν -perfect, $y \neq \nu f(x_0)$. Hence there exists a function $h: \nu Y \to I$ such that h(y) = 1 and $h(\nu f(x_0)) = 0$. Consider the composition $\varphi = h \circ f$ and the set $Z = X \cap \varphi^{-1}(0)$. Clearly, Z is a zero-set and, by Theorem 1, $Z \in \mathfrak{F}$. It is easy to see that $Z \cap f^{-1}(y) = \emptyset$ and f(Z) is closed in Y. In fact,

$$f(Z) = f((\nu f)^{-1}(h^{-1}(0)) \cap X) = \nu f((\nu f)^{-1}(h^{-1}(0)) \cap X) = h^{-1}(0) \cap Y.$$

Thus condition (4) holds.

A map $f: X \to Y$ is said to be a Z-map if the image under f of each zero-set in X is closed in Y. A map f is a WZ-map if $(\beta f)^{-1}(y) = \operatorname{Cl}_{\beta X} f^{-1}(y)$

for every $y \in Y$, where $\beta f \colon \beta X \to \beta Y$ is an extension of f. Isiwata [6] has shown that all Z-maps are WZ-maps.

THEOREM 3. If a map $f: X \xrightarrow{\text{onto}} Y$ is a WZ-map and $f^{-1}(y)$ is closed in νX for each $y \in Y$, then f is ν -perfect.

Proof. Suppose, on the contrary, that there exists a point $x_0 \in \nu X \setminus X$ such that $\nu f(x_0) = y \in Y$. Clearly, $\beta f \colon \beta X \to \beta Y$ is an extension of νf . Then $\beta f(x_0) = y$. Since $f^{-1}(y)$ is closed in νX , $x_0 \notin \operatorname{Cl}_{\beta X} f^{-1}(y)$. But f is a WZ-map, hence $\beta f(x_0) \neq y$; a contradiction.

Note. The converse of Theorem 3 is not true. In fact, if X is real-compact, then each map $f: X \to Y$ is ν -perfect. Clearly, such a map is not, in general, a WZ-map. For example, if E is the real line, $A = \{x_0\} \cup (\beta E \setminus E)$, where $x_0 \in E$, and $\varphi: \beta E \to \beta E/A$ is the natural map, then the restriction $\varphi \mid E: E \to \beta E/A$ is ν -perfect but not a WZ-map.

COROLLARY (Dykes [1]). If $f: X \xrightarrow{\text{onto}} Y$ is a WZ-map onto a real-compact space and $f^{-1}(y)$ is closed in νX for each $y \in Y$, then X is real-compact.

Proof. The remainder of νY is empty. By Theorem 3, $\nu f(\nu X \setminus X) \subset \nu Y \setminus Y$. Hence the remainder of νX is empty.

Clearly, if $f: X \to Y$ is a map onto a realcompact space Y, then X is realcompact iff f is ν -perfect. Hence Theorem 2 can be considered as the final result on preimages of realcompact spaces. This result is actually a generalization of that of N. Dykes. The following theorem gives a criterion for a map to be ν -perfect.

THEOREM 4. If a Z-map $f: X \to Y$ is onto and $f^{-1}(y)$ is Lindelöf for each $y \in Y$, then f is v-perfect.

Proof. We shall show that condition (4) holds. Suppose, on the contrary, that there exist $y \in Y$ and a z-ultrafilter \mathfrak{F} with the c. i. p. and empty intersection such that, for each $Z \in \mathfrak{F}, Z \cap f^{-1}(y) \neq \emptyset$. Note that the family $\{Z \cap f^{-1}(y) \colon Z \in \mathfrak{F}\}$ is a z-filter with the c. i. p. in $f^{-1}(y)$. In fact, \mathfrak{F} is closed with respect of countable intersections. Since $f^{-1}(y)$ is Lindelöf, $\bigcap \{Z \cap f^{-1}(y) \colon Z \in \mathfrak{F}\} \neq \emptyset$. Thus \mathfrak{F} has a non-empty intersection; a contradiction.

Note. Easy examples show that the converse is not true.

REFERENCES

- [1] N. Dykes, Mappings and realcompact spaces, Pacific Journal of Mathematics 31 (1969), p. 347-358.
- [2] R. Engelking, Outline of general topology, Amsterdam 1968.
- [3] L. Gillman and M. Jerison, Rings of continuous functions, Princeton 1960.
- [4] M. Henriksen and J. R. Isbell, Some properties of compactifications, Duke Mathematical Journal 25 (1958), p. 83-106.

- [5] E. Hewitt, Rings of real-valued continuous functions, I, Transactions of the American Mathematical Society 64 (1948), p. 54-99.
- [6] T. Isiwata, Mappings and spaces, Pacific Journal of Mathematics 20 (1967), p. 455-480.

SILESIAN UNIVERSITY, KATOWICE

Reçu par la Rédaction le 23. 6. 1971; en version modifiée le 25. 10. 1971