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Introduction.

1. Let 4 and & denote the closed unit disc and the closed plane,
respectively, and let the class Sg be defined as follows:

DEFINITION 1A. A function f is said to be of the class Sg if it maps 4
onto itself @-quasi-conformally with f(0) = 0 and f(1) = 1.

Clearly, this is equivalent to

DEFINITION 1B. fe 8q if f(2) = f*(2) identically for z e 4, where f*
is defined in &, maps it onto itself @-quasi-conformally with f*(0) = 0,
f*Q) =1, f*(o0) = oo, and satisfies f*(z) = 1/f*(1/z) for z€¢§, 2z %0, oo.

We have also

DEFINITION 1C. fe 8q if f(2) = f*(2) identically for z e A, where f*
is defined in & as follows:

(i) f* is a function whose complex dilatation u*= 9f*/0z: of*/oz
satisfies

(1) u*(z) = er'a®zy*(1/Z)  a.e. in &,

(ii) f* maps & onto itself @ - quasi-conformally with f*(0) = 0, f*(1) = 1,

f*(00) = o.
Obviously, Definition 1B implies Definition 1C.

Conversely, suppose that f e Sy according to Definition 1C. By the
well-known theorem on existence and uniqueness (see e.g. [8], p. 204)
there exists exactly one function f* defined in § which maps it onto itself
@ - quasi-conformally with f*(0) = 0, f*(1) =1, f*(co) = oo, and has u*
as its complex dilatation a.e. in & On the other hand, the function f**(z)
= 1/f*(1)z) (# %0, o), f**(z) =2 (2= 0, o) is also defined in & and
maps it onto itself @ -quasi-conformally. with f**(0)= 0, f**(1)=1,
f**(o0) = oo, and its complex dilatation u** satisfies u**(z) = e***®2,%(1/z),
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a.e. in & Since u**(z) = u*(2) a.e. in &, then f**(2) = f*(2) identically in &,
and the proof of equivalence is completed.

2, Hence we see that the functional equation (1) for the complex
dilatation u* of f* together with f*(0) = 0, f*(1) = 1, f*(oc) = oo implies
that |f*(z)| = 1 for |z| = 1. This result is not trivial and it is rather difficult
to obtain it from the Beltrami differential equation.

Naturally, this suggests looking for other functional equations con-
cerned with u* which may imply some interesting geometric conditions
for f* and, consequently, for f. For instance, it would be interesting to
derive a functional equation for u* which implies such a property as
the invariance of the boundary points of f (c¢f. [17] and [5]). A functional
equation with the properties described above would make it possible
to apply the parametric method introduced by Shah Tao-shing [15] to
the class under consideration, and then to obtain sharp estimates of some
functionals.

The above facts were kindly pointed out to me by Professor
F. W. Gehring during my stay at the Imperial College, London, where
I held a scholarship of the Polish Academy of Sciences, under the gnidance
of Professor W. K. Hayman. I am also indebted to Professor J. Krzyz
from Lublin for his helpful remarks during the preparation of this paper.

3. Let a be a real number such that a/r is irrational. The present
paper is mainly concerned with a class Fj, defined precisely in the next
section, which is connected with the equation

(2) p*(z) = eriateiangsgx(gialz)  ge. in &

in the same way as 8 is connected with (1). The class is independent
of the choice of a, and any fe Ey satisfies f(z) = z for |¢| = 1. To the
best of our knowledge functions of this class but under a stronger hypo-
thesis argf(z) = argz were first considered by Kiinzi [7] (pp. 25-26).
On the other hand, this is a subclass of a class introduced in [11]
(pp. 161-163).

We find a parametric representation for functions f of the class Ej
and determine the extremal functions for a wide class of functionals
dependent on f. Our general results are then applied in order to derive
the regions of variability of the functionals f(2)/2, f(z) —z and f(2;) —f(2s),
2,2, 2, being fixed, and f running over Eg. The methods of proof are
chosen so that they may also be applied to other classes of mappings,
which are considered in Sections 17-24.

Next, analogous results are obtained for a class EJ, defined precisely
in Section 17, which is connected with the equation u(z)= e—2%pu(ei%z),
valid a.e. in &; a[n being real and irrational. Finally, two families of classes
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of Q-quasi-conformal mappings with some analogous properties are
introduced. They have a clear geometric interpretation. Two of those
classes, B and Hj, the latter being defined in Section 22, may be inter-
preted as normalized ‘‘elliptic”’ and ‘“hyperbolic’”’ classes, and used in
order to generate a wide subclass of the class of all normalized Q- quasi-
conformal mappings of the closed plane onto itself in such a way that the
methods given for Ey can be transferred to these cases. This can be done
by considering the classes EY = E& « HS, EY = EY « B3V (n= 2, 3,...)
or HY = HY « By, HY = HY « HY ™ (n = 2,3, ...), where A o B denotes
the class of all compositions f o g, i.e. w = f(g(2)); fe¢ 4, g« B. Another
way of generalization is to consider various classes of quasi-confor-
mal mappings which are solutions of Beltrami differential equations
with separated variables, e.g. mappings with the complex dilatation of
the form p(2) = u([2]) ua(aTg2), p(2) = pi(res) ui(ime) or w(z) = ii(2)hu(2),
where pu,, s, ut, u3, iy, 4, depend on the shown variables only. The
classes Eg, B}, Hg, H) may serve here as example. The final part of the
paper is an announcement of the topies which will be investigated in
subsequent papers.

The introduced classes of quasi-conformal mappings have a eclear
physical interpretation. The author hopes to apply the present and future
results to the theory of physical phenomena in thin films of solids.

§ 1. The class E,.

4. DEFINITION 2A. A funetion fis said to be of class Ej if it belongs
to Sg and if f(z) = e?a®2f(|z]) for z € A, 2 # 0.

The definition implies

17 () = |f(lz])| = R(j2]) ,
arg(f(2)/2) = argf(lz]) = 68(j2]) (2 #0).

Now we obtain for F, analogues of Definitions 1B and 1C.

DEFINITION 2B. fe Eg if f(2) = f*(2) identically for z ¢ 4, where f*
is defined in &, maps it onto itself @-quasi-conformally with f*(0) = 0,
f*1) = 1, f*(o0) = oo, and satisfies f*(z) = e~%/f*(e%|z) for z € §, 2 £ 0, oo,
where a is a real number such that /= is irrational.

Definition 2A implies that f*, defined by f*(z) = f(z) for ze 4 and

by f*(z) = 1)f(1/z) for 2 ¢ 4, 2 # oo, f*(c0) = oo, maps & onto itself Q - quasi-
conformally with f*(0) = 0, f*(1) = 1, and satisfies in it (2 # 0, o)

e~/ f*(e%[z) = e~ief*(z]e") = e~TgietiorgrfA([z]) = f*(2)

(3)

for any real a. Hence f ¢ Eg according to Definition 2B.
Conversely, suppose that f e Eg according to Definition 2B. Clearly
fe 8o if we can prove that |f(2)| = |2| for |2| = 1, and so we only have
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to verify that f(z) = e?882f(|z|) for ze 4, 2 # 0. To this end we notice
first that setting ¢ = e%/z in the equation f*{) = e—i/f*(e®a/l) we
get f*(e*efz) = e~ia[f*(e*z), i.e. 1[f*(e®[Z) = e~"af*(e?’az). Hence [*(z)
= e~ Ta/f*e'ez) = e2"af*(e?z). Suppose now that we have f*(z)
= e 2An-Diafx(en—lyiaz) for a positive integer n. Taking = e2n—Diay jp
f*(8) = e 2%f*(e2%l), we obtain f*(e¥n-Disy) — e—2iaf¥(¢2nisy). Consequently

(4) f* (z) — 6—2(n—1)iaf*(62(n~1)iaz) — e—2niaf*(e2niaz) ,

and so (4) holds for any positive integer », and it can easily be seen that
it holds for any integer n. Let us observe that since a/= is irrational, by
a theorem of Kronecker, for any real ¢ there exists a sequence {2n;a-+
+ 2mym}, where my (k= 1,2, ...) are integers, tending to ¢ as k—+ oo,
Setting ¢ = —argz we obtain f*(z) = e*®™87f*(|2|), and since f*(z) = f(2)
for z € A, the desired condition follows.

DEFINITION 2C. fe Eg if f(2) = f*(2) identically for z ¢ 4, where f*
is defined in & as follows: ~

(i) f*is a function whose complex dilatation x* satisfies condition (2)
where a is a real number such that a/r is irrational,

(ii) f* maps & onto itself @ - quasi-conformally with f*(0) = 0, f*(1) = 1,
f¥(00) = oo.

Definition 2B implies that f., f; exist a.e. in 4 (see e.g. {8], p. 172),
and that

—e ia a _e—td

HO) mazf (6Rfe) = s L)
e )}z[fc V)= (¢47)
and, similarly,
) = ",_/“)}2 I C)]c_em,zm - z’z{}?(l_ﬂwz)}z”c ot

Hence, denoting by u* the complex dilatation of f*, we get for u*
the condition required in Definition 2C.

Conversely, suppose that fe Ey according to Deflmtlon 2C. By the
well-known theorem on existence and uniqueness (see e.g. [8], p. 204)
the function f* defined in that definition is determined uniquely. On the
other hand, the function f*¥(2) = e—ia[f*(¢ie/z) (2 # 0, o), [**z) ==z
(2 = 0, oo) is also defined in & and maps it onto itself @ - quasi-conformally
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with f**(0) = 0, f**(1) = 1, f**(oc) = oo, and its complex dilatation u**
satisfies u**(2) = e2lattiares *(giajz) g.e. in & Since u**(z) = u*(z) a.e.
in &, then f**(z) = f*(2) identically in & and the proof of equivalence is
completed.

5. Definitions 2A, 2B and 2C are connected with certain funetional
equations for f, f* and u*, respectively. It is natural to find for Eg, also
a definition connected with a functional equation for u. Clearly, there
is no analogue of such a definition for Sg.

DEFINITION 2D. A function belonging to Sp is said to be of class Ej
if its complex dilatation p satisfies u(z) = e?ie=zy([2|) a.e. in A.

Definition 2A implies that f;, f; exist a.e. in 4 (see e.g. [8], p. 172),
and that, if 7 = ||, e = ¢/, f(r) = [f(2)]i=r, We have

fd2) = 3%{Ef(r)}:_z(25)1/2+:—£{£f(r)}a%(z/§)1/2
= }(z2)"ef (1) + 3(22) ¥ (r) .

Thus
(5) f2) = 3T =12+ 121 F 12D}
and, similarly,
(6) fo(z) = Lerisme={[ '(r)]_p — (/12D f(J2])} .

Hence u(z) = e*ia8zy(|2|) a.e. in 4, i.e. fe Eg according to Defini-
tion 2D.

Suppose now that fe Ey according to Definition 2D. Setting u*(2)
— u(z) for ze A and u*(z) = eties7y(1)z) for z¢ A, 2z # oo, we see that

exp (2ia+ 4iargz) u*(e™/z)
= exp(—2ia+ 4iarg(z/e~ 1)) u*(¢%[z) = exp(—2ia) u*(eiz)
= exp(—2ia)exp(2ta+ 2targz) u*(|z]) = u*(2)
for any real a. Hence we conclude that f ¢ Eg according to Definition 2C,

where f* is defined by f*(z) = f(2) for ze¢ 4 and by f*(z) = 1/f(1/z) for
2¢ 4, 2 # oo, f¥o0) = oo.

§ 2. Further properties of £,. Bounds for E and 6.

6. By relations (5) and (6) we can find two more definitions for the
class E,. The second of them implies sharp estimates of B and @ (c¢f. (3)),
given in Theorems 1 and 2, respectively. '

DEFINITION 2E. fe Eg if fe 8o and zf,(2) —Zf;(2) = f(2) a.e. in A.

Definition 2A implies that f., f; exist a.e. in 4, and that relations (5)
and (6) hold. Hence 2f,(z) —Zzf;(2) = et®®2f(|z]) = f(2) a.e. in 4, i.e. fe Eg
according to Definition 2E.

21 *
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Conversely, suppose that fe Eg according to Definition 2E. Hence,
setting r = |2], ¢ = e?®®2 we have

2 o = = ftre) 43 [t 5 (r0)+150) 5 (o)
= (1/e*) {refa(2) —(rfe) fa(z) —f(re)}
= e~ 2tat82{of (2) —2fz(2) —f(2)} = 0  a.e. in 4.

Consequently e—tezf(z) = C(J2|), and choosing 2> 0 we obtain
C(|z]) = f(|z]). Thus fe Eg according to Definition 2A.

DEFINITION 2F. fe EQ if it is given by the formulae

1+u(r) dr
1—u(r) r

flzy=20 for z2=0,

f(z) = exp( —— a.rgz) for zeAd, 2z £ 0,

(7)

where u is measurable with sup |u¢(r)| <1 and esssup ()] < Q_ .
0<r<1 <r<i SQ+1

Remark 1. In general, u is assumed to be complex-valued.

Definition 2A implies that f, f; exist a.e. in 4, and that relations (5)
and (6) hold, where

(8) fry=Uf(@)k=r (r>0).
Hence, by Definition 2D,

o-siargsd2(2) _ Fr) — (U fir)

(r=|2]) a.e. in 4.

#r) = f2) o) +Qnf)
Consequently,
f:(” L+ p(n) (1/r) ae.in 4,
fr)  1—p(r)
and, by f(1) = f(1) =1,
©) Fial) = exp( f{+ﬁ§:§ %),

where the integral exists by Definition 2A. Since (8) and Definition 2A
imply f(2) = e*'“ng(lzl) for z¢ 4, z # 0, and f(0) = 0, we conclude that f
satisfies (7) as desired.

Conversely, suppose that fe Eg according to Definition 2F. Hence

£ —@nfr
10 = —_— =
10 ot amim

(r=|2]) a.e. in 4,
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where f is defined by (8). On the other hand, (7) implies f(2) = e"““f(lzl)
for z¢ 4, 2 # 0, whence (cf. (5) and (6))

f2) = ${f (") + (A[n)f(r)}

filz) = Yoz {f"(r) —(1/r) f(r)}
From (10) and (11) we obtain f;(2) = e?*8®2y(|z|)f(2) a.e. in 4. Now,
let us consider the Beltrami equation w; = €**%®2y(|z|)w,. By the theorem
on existence and uniqueness quoted before there exists exactly one func-
tion f* defined in A4 which maps it onto itself @-quasi-conformally with
f*(0) = 0, f*(1) = 1, and has u*(2) = €*/878z,(|z|) as its complex dilatation
a.e. in A. Hence f* ¢ Eg according to Definition 2D. Since Definitions 2D
and 2A are equivalent, we can repeat the previous considerations, which
show that if fe Fy according to Definition 2A, then fe Ey according
to Definition 2F, with f* substituted for f. Hence f*(z) = f(2) identically

in A. Since f* ¢ Eg according to Definition 2A, we see that f ¢ Eg according
to the same definition, and the proof is completed.

(11) (r=12|) a.e. in 4.

7. Before deriving the announced estimates of R and 0 it is con-
venient to notice the following

LEMMA 1. fe Eg implies ' € By, and (3) implies

If~ (w)] = R™(|wl) ,
arg(f " (w)fw) = argf '(jw]) = —6(R7(jw])) (w #0),
where arg(f~(w)jw) = —arg(w[f(w)).
This is an immediate consequence of Definition 2A.

8. Now we proceed to derive the bounds of R and 0 (cf. (3)) when f
ranges over Eg.

TBEOREM 1. For any fe Eg and ze 4, z # 0, we have
2° < If ()] < el
Both estimates are sharp for any ze A, 2 # 0, and @ € {1, 4+ o). The

only extremal functions for every z are: f(s) = 5|92 (5 £ 0), f(0) = O

for the upper bound, and f(s) = |s|%**° (s % 0), f(0) = 0 for the lower
bound.

Proof. Applying Definition 2F and setting o = |u|, ¢ = argu, we
get for ze A

(12)

1
. ‘l:q)(f
L [ peltetesndr

1 1 —p?(7) dr
g 7

1—g(r)ei¢(’J7_ fl+g’(r)—2g(r)cos<p(r) r

L2
1

l r) dr 1dr 1 .
[ JQ- ;= Qlog]zl logI ]1/0
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Equality holds only for u(r) = —(Q —1)/(@+1), which corresponds to
f(s) = |5]"9€**™? (s 5= 0), f(0) = 0. By Lemma 1 we may apply the result
obtained to the inverse function, whence |f(z)| > |2|°. Here the only
extremal function for every z is f(s) = |s|%'*™*® (s % 0), f(0) = 0, which
corresponds to u(r) = (@ —1)/(Q+1).

Remark 2. Theorem 1 is also a consequence of a well-known inequality
of Grotzsch [3).

THEOREM 2. For any fe Eqg and ze A, z # 0, we have

o=t <l 3o g o

where arg(f(z)[z) = 0 for z= 1. Both estimates are sharp for any ze 4,
2# 0, and Q € (1, +o0). The only extremal functions for every z are: f(s)
= |5/%¢**™* (s £ 0), f(0) = O for the upper bound, and f(s) = |s|Pe**™* (s + 0),
f(0) = 0 for the lower bound, where g = 1(1—4)Q+ 3(1+14)(1/Q) and the
branch of arg(f(s)/s) is chosen in each case so that arg f(1) = 0.

Proof. Applying Definition 2F and setting ¢ = |u|, ¢ = argu, we
get for zed, z#0

1 1

f(z) . 14e(r)e®dr —2p(r)sing(r) dr
A=~ lejli lml—g(r)eiw") r —lzl 14 0%(r) —20(r)cose(r) r
1— ¢*r)
B € M
= . 20(r) v J 1—g¥n)r
tz2l 14 0 (7‘) —2@(?‘) 1—_}-—92@ 2]

1

1 1 1
~(Q—=)log = .

IJI s(0-g) ¥ = 5(0—g)ue;
Equality holds only for u(r)= q(1+ q2)_1{2_q— i(1—¢%)}, where
¢ = (@ —1)/(Q+1), and this corresponds to f(s) = |s/’¢**®* (s % 0), f(0) = 0.
The above result implies also the lower bound of arg(f(z)/z) given in Theo-
rem 2, where the only extremal function for every z is f(s) = |s|’¢'*™®°

(8 # 0), f(0) = 0, which eorresponds to u(r)= q(1+ qz)“1{2q+i(1 —q’)}.

§ 3. Parametric representation.

9. Here we give two theorems on parametric representation. First
of them expresses the derivative g; of a function w = ¢(z, 1), g(z,0) = 2,
g(z,1) = f(=), g(2,t) e Bg, 0 <t <1, with respect to ¢ in the form of an
integral which depends only on the complex dilatation »* of the inverse
function g—!. This theorem is a consequence of the corresponding theorem
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for Sg in the version due to Krushkal [4] (cf. also [10]), which seems to
be the most convenient for our purposes. The second theorem expresses g:
in the form of an integral which depends only on the dilatation u of f,
and is proved directly.

THEOREM 3. Suppose that w = f(z) belongs to EQ and has o = u(z)
as its complex dilatation. Moreover, suppoge that the functions w = g¢(z, ),
0<t<1, belong to Sg and have complex dilatations

(13) v(z,t) = tu(2) .
Then w = g(z,t), considered as a function of z and t, satisfies on
Ax{t: 0 <t<1} the equation ”
8w (1/r)v“‘(1 t)
14 = ==
4 1= petr, OF

subject to the initial condition g(z, 0) = 2, where v* is the complex- dilatation
of g7t :

Remark 3. By Definition 2D the functions w = g(z,?), 0 <1<1,
belong to Eg.

Proof. By the theorem on parametrization for the class Sy quoted
above, w = g(2,t) satisfies on 4 x {{: 0 < ¢ < 1} the equation '

w _ w(l— w) (¢, 1) - (g, )
15 —
% ,HU { -0 t1-b( uo}déd”

(E=&+1n)
subject to the initial condition g(z, 0) = z, where y is defined by

© (g_l(wr t))
o PR

(16) p(w, ) = ; exp (—2iarggy (w, 1)) .

Applying (13), we have

(1/t)"’(g_l(w7 t), t)
1—|v(gY(w, t), 1) "

p(w,t) = exp (—2iarggs, (w, t)) .

On the other hand, it can easily be verified that
v(g™(w, 1), 1) = —»*(w, t)exp (2iarg gy (w, 1)) .

Consequently,
(1/t)v*(w, 1)

YU D = = o, o
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Substituting this result in (15) we obtain

w " ' D += ”*_(—C’B '}dfd
" T e 1—G P A - w—0) (A —0) (1 —wd)
w(l w ) ddy
) mLfl ¥, ) C(L—C)(w—C)

where »(w, t) = v*(w, t) for w e 4 and »(w, t) = etismwy*(1/w, t) for w ¢ A.
Now we apply Definition 2D to g (ef. Remark 3). We get

+oo w
_32 _ _w(l —w) f f €2y (r, t) rdd dr
at 1—p(r, 1)) re®(1 —re®) (w —re®)

w(l w) afry»(r,t)
fl—]vrt[’ f(l Cw C

By the theorem on residues

i 0 for 0 <7 < |wj,
—— = 2ni/(l—w) for w<r<1,
1— i

ICI-r( ) (w—0) 0 for 1<r< 400,

Consequently,

w 2w [ (Ar)¥(r, 1) t)
a_'TfI —p(r, t12

Hence, since »(r, t) = »*(r, t) for 0 < r < 1, the assertion of Theorem 3
follows.

Remark 4. Theorem 3 can also be proved directly by means of
Definition 2F.

THEOREM 4. Under the hypotheses of Theorem 3 the function w = g(z, t),
considered as a function of 2 am,d t, satisfies on A x {t: 0 < t < 1} the equation

ow _ 1—|-t/u(r) 1/r)u(r)
a7) 5= —2exp( | 1 m(r)—-i-zargz)f[—wd

subject to the imitial condition g(z,0) = z.
Proof. By Definition 2F we have

1 +tu(r) dr
—tu(r) r

g(z,t) =0 for z=0.

gz, ) = exp( +@a.rgz) for zed, 2+£0,

Hence the assertion of Theorem 4 follows.
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§ 4. The general extremal problem in E,.

10. In Theorems 1 and 2 we have given sharp estimates for |[f(z)]
and arg(f(z)/z) when f ranges over Eo. Now we proceed to more general
extremal problems. First we determine the extremal functions for any
sufficiently regular real-valued functional U = F(2y,...,2n; Wy, ..., Wp)
with fixed z,, ..., 2, € 4, w, = f(2), ..., Wn = f(2s), and f running over E,.
Next we determine the extremal functions in an analogous problem
with the additional condition that another real-valued functional @
satisfying the same regularity conditions admits a given fixed wvalue.
In several cases this enables us to find the region of variability of the
complex-valued functional F4 ¢G.

THEOREM 5. Let U = F({,y ...y Ln; @1y ..., wa) be a real-valued fumction
defined fO?’ Cr € _Dk, Wy € .DQ'k, where Dk C A, DQ,k:) U g(Dk) (k = 1, ceey ’n),
g

g € Bg and g ranges over Eg. Suppose that F ¢ C* with respect to w,, ..., wg.
Then there exists a function f € Eq for which the functional U = F(z, ..., 2a;
g(2),y ..., g(2a)) attains its mazimum when g ranges over Eq; 2x, 2 € Dy,
|2k < [25-1] (k= 1, ..., n), 20 = 1, being fized. The maximum is also attained
for any function f, defined by fi(s) = f(8) if |za| < |8]| <1 and by fi(s)
= f(2z)f*(8/2n) if |8] < |2, where f* € Eq. Moreover, if f is not the identity
Sfunction and if

n
(18) Z f(zk)ka(zl, eevy %ny f(zl), ...,f(z")) #* 0 (m — 0, o n—l) ,
k=m+1
then we have
(19)  f(8) = Wpy|s)zg |y oeiem giors(elzm)

for |emp| < 18] < |2m| (m=0,...,n-1),

where
(20)  Bm(2yy -ey 205 &m) .
— —;—(Q-l—%)—%em((?—%)exp(—iarg Z Wi Fo,(21y ooy 22 Wy oo w,.)) R

k=m+1

em=1o0r =1, wy=1, w,=7f(2), ..., wa=f(2n),

and the branch of arg ( f (s)/s) 8 chosen for |2,4.1| < |8| < |2m| 0 that f(8)— w04,
as 8 — 2. The theorem remains valid if “minimum’ i3 substituled for
“mazimum”.

Proof. It is well known (see [2], p. 324) that if F satisfies the analo-
gous conditions with Sqg substituted for Eg, there exists a function f*  Sg
for which the functional U= F(z, ..., 2s; §(21), «..s g(zn)) attains its
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maximum when g ranges over Sg; 2x,2re€ Dy (k= 1, ..., n) being fixed.
Furthermore, if f is not the identity function and if

wr(l —w
A(s) = 2/ : 2 ka(zly veey Zny Wiy eeey W)+

1—8){wr—s)

Wil — Wg)
8(1—38)(1—wgs)

._|_.

ka(zl’ eve g z”; w,.’ LALN ] wn)} # 0 a.e. in A )

where w, = f*(2,), ..., wp = f*(2s), then the complex dilatation u* of f*~*
is given by the formulae

(21)  |ur(s) = (@ —DNQ+1), argu*(s)= —argA(s) ae. in 4.

On the other hand, if xz denotes the complex dilatation of f, and if
the functions w = g(z,t), 0 <t <1, belong to Sy and have complex
dilatations (13), respectively, then w = g(z, t), considered as a function
of z and ¢, satisfies on 4 X {t: 0 <t <1} equation (15) subject to the
initial condition g(2, 0) = 2, where y is defined by (16) (see [4]; cf. also [10]).
Hence (21) can be written in the form

d** .
(22) F(zlr ey Zn3 §(21,1), ey g(2a, 1)) = O,

where the asterisks denote that ¢; is to be replaced by the integrand in
the corresponding parametric equation (including the expression before
the sign of integration), and that u* is to be replaced in it by ¢u*. The
restriction A(s) # 0 a.e. in 4 can be written in the form

ax* .
(23) E{F(z" ey 2y 9(21, 1)y oy g(2,1)) #0  ae. in 4,

where the asterisk denotes that g; is to be replaced by the integrand in
the corresponding parametric equation (including the expression before
the sign of integration).

In our case, since Eg is a normal family (cf. [8], pp. 76-77), there is
a function f ¢ Bq for which the functional U = F (2, ..., 2s; 9(21), ..., (2n))
attains its maximum when g ranges over Eg; 2k, 2x € Dy, |2k < |2r—1]
(k=1,..,n), 2,=1, being fixed. From Definition 2F it follows that
the maximum is also attained for any function f, defined by fi(s) = f(s)
if |2z] < (8] <1 and by fi(8) = f(2a)f*(8/2n) if |8| < |2s|, Where f*e Ep.
Suppose that f is not the identity mapping. Formulae (21) do not hold,
in general, in our case, but relation (22) and restriction (23) remain un-
changed, and the argument given in [2], pp. 322-326, may be applied
here. More generally, it should be remarked that this argument may be
applied to any compact subclass of the class Sg, and for any family of
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functions w = g(2,t), 0 <t <1, which belong to Sp and have complex
dilatations w = »(2, %), (2, 0) = 0, »(2, 1) = u(z), respectively, satisfying
the regularity conditions described in [15], p. 403. Here ux denotes the
complex dilatation of f. Clearly, we have to choose functions w = »(z, t)
so that every w = g(z,t), 0 <t<1, belongs to the class under con-
sideration. In each of these cases condition (22) and restriction (23) remain
unchanged.
Applying (22) and (23) to our case, we get

lw*(v)] = (@ —1)/(@+1)
and

arg (o) = —arg D FER)Faylery s 23 £(21), ooy Fl2a)) + 37(1—em)
=m+1

a.e. in {v: [f(2mt1)] < |v| < |f(2m)]}, m=0,...,n—1, where u* is the
complex dilatation of f7!, and &, = 1 or —1. Here we assume that f is
not the identity mapping and that restriction (23) is fulfilled. This re-
striction may be written in form (18). Now, since u* is a constant a.e.
in {o: |f(ems)] < 9| < |f(2m)|} for m =0, ...,n—1, we denote it there
by vm. Hence, by Definition 2F, we have

f—l('v) B zml :v/f(zm) ](1‘{‘Vm)l(l—}'m)einrg(v//(zm))

for |f(2m+1)| < |v] < |f(2m)|, Where the branch of arg(f"l(v)/v) is chosen so
that f~(f(s))—>%m as §—>2zm. Now, applying Lemma 1 to f~* (formulae (12)),
we get formulae (19) with

1+'ym)/ 1+ ym
re
1‘_7m l_Ym

= (1 —2ym+ |ym)A—lynf) (m=0,..,n-1),

whence, by the formulae for u* obtained before and u*(v) = ym a.e. in
{v: |f(Zm+1)| < 9| < |f(2m)|}y, m =0, ..,n—1, relations (20) follow. Here
the branch of arg(f(s)/s) is chosen for |z,.1] <|[s]| < |2n| so that f(s)—
> Wp A5 §—>2p.

In case of the minimum of F the proof remains unchanged. We
cannot decide a priori which system of &, (m = 0, ..., n —1) corresponds
to the case of the maximum, and which to the case of the minimum of
the given functional F; zx,2r € Dy (k= 1, ..., n) being fixed.

Remark 5. Theorem 5 can be proved with the help of Theorem 4
instead of Theorem 3, and also directly by means of Definition 2F.

ﬂm(zl’ eeey Zn; Em) == (l_iim

11. In this section we determine the extremal functions in an analo-
gous problem with the additional condition that another real-valued
functional satisfying the same regularity conditions admits a given fixed
value.












