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COLLECTIONWISE H AUSDORFF PROPERTY
IN PRODUCT SPACES

BY

T. PRZYMUSINSKI (WARSZAWA)

1. Introduction. A T,-topological space is called collectionwise Haus-
dorff if for every discrete family {z,};., of its points there exists a disjoint
family {V };cr of open sets such that z,¢ V,. Clearly, every collectionwise
normal space is collectionwise Hausdorif.

Assuming Godel’s Axiom of Constructibility V = L, Fleissner proved
in [5] that every normal first countable space is collectionwise Hausdorff.
Fleissner’s theorem and a classical result of Bing [2], stating that every
collectionwise normal Moore space is metrizable, raised the necessity
of a more thorough investigation of the relation between collectionwise
Hausdorff property, normality and collectionwise normality.

In this paper we study the relation between these properties in
products of paracompact spaces. We show that in appropriate models
of set theory there exist examples of paracompact first countable spaces X
such that X* is collectionwise Hausdorff but not collectionwise normal
and that one may additionally assume either that the space X*? is normal
or that it is non-normal.

The construction of our examples depends heavily on the beautiful
technique developed by Fleissner in [6] and a recent result of Pol [13].

We adopt the notation and terminology from [4]. By B = B(w,)
we denote the Baire space of weight w,, i.e. B = D(w,)”, where .D(w,)
is a discrete space of cardinality w,. A space is called perfect if its every
open subset is an I -set.

A subset ¥ of an ordinal number A is stationary in A if it intersects
every closed unbounded subset of A. Let E(w,) denote the following
statement:

E(w,) There exists a set F c w, of ordinals of cofinality », which
is stationary in w,, but for no 1 < w, the set EN4i is stationary in 4.

It is known (cf. Fleissner [6]) that the conjunction E(w,)+MA +
+ T1CH of E(w,), Martin’s Axiom (see, e.g., [8] or [9]) and the negation
of the Continuum Hypothesis and also the conjunction E(w,)+ CH of
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F(w,) and the Continuum Hypothesis are consistent with the ZFC axioms
for set theory. Moreover, Gdédel’s Axiom of Constructibility V = L (see,
e.g., [3]) implies F(wy)+ CH.
The aim of this paper is to describe the following examples:
ExavmpLE 1. (E(w,)+MA+ "]CH) A first countable paracompact
space X such that X? is collectionwise Hausdorff and perfectly normal,
but not collectionwise normal.

EXAMPLE 2. (K (w,)+CH) A first countable paracompact space X
such that X? is collectionwise Hausdorff and perfect, but not normal.

ExAamPLE 3. (F(w,)) A perfectly normal collectionwise Hausdorff
space which is not collectionwise normal (1).

The paper is organized as follows. Section 2 is devoted to some prelim-
inary notions and lemmas. In Section 3 we describe a basic construction,
which is used in Section 4 to obtain Examples 1 and 2. In Section 5 Exam-
ple 3 is constructed.

2. Preliminaries. A subset A of a space Y is called a selector for a
family 2 = {D,: se S} of subsets of Y if |[AnD,| =1 for every seS.

A covering 2 = {D,: se 8} of a space Y, consisting of pairwise disjoint
non-empty subsets, is called a regular decomposition of Y if the following
two conditions are satisfied:

(i) every selector for 2 is o-discrete in Y;

(ii) no family {U,},.s of open subsets of ¥ such that D, =« U, for
se 8 is point-countable.

The following theorem has been recently proved by Pol [13]:

THEOREM. (E(w,)) There exists a reqular decomposition of B of cardi-
nality w,.

If 2 ={D,: se 8} is a family of sets, then by 2® we denote the
family

2® = (D, x Dy: (s,1)e 8%}.

In the sequel we shall need

LEMMA 1. If 2 = {D,: 8¢ 8} i3 a regular decomposition of a metric
space Y, then the family 2® is a reqular decomposition of Y*.

Proof (communicated to the author by R. Pol). Let A be a selector
for 2®), We shall show first that A is o-discrete in ¥2. For se § put 4,
= AN(D, x Y). Since the projection of A, onto the second axis is a selector
for 2, we deduce that

(1) the set A, is o-discrete in Y2
(1) The space F constructed by Fleissner in [6] and the space from our Example 1

have also the properties required in Example 3, so that the only advantage of Example 3
lies in a relatively weak set-theoretic assumption.
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Let T be a selector for the family &/ = {4,: se S}. Since the projection
of T onto the first axis is a selector for 2, we deduce that

(2) every selector for o is o-discrete in Y2
By (1) the set 4, can be written in the form
4, = U 4,(m,n),

mn<o
where for every distinet x, yeAd,(m, n) we have g(z, y) = 1/n (o denotes
a metric in Y?).

Put A4,,, = U{4s(m,n): se8}. If U is an open subset of ¥* of
diameter < 1/n, then clearly |UNA,(m, n)| < 1. Therefore the set UnNA4,,,
is a part of a selector for &/ and hence, by (2), UNA4,,, is o-discrete in Y>.
From the local o-discreteness of 4,, , it follows that the sets 4,, , and,

consequently, also the set 4 = (U A, , are o-discrete in Y?.
mn<o
To complete the préof of Lemma 1 it suffices to note the following

fact:

(3) I 2 ={D,: seS} is a regular decomposition of a space Y, then
no family {H,},.s of open subsets of ¥Y? such that D,x D, c H,
for se S is point-countable.

To prove (3) assume, on the contrary, that the family {H,},.s is
point-countable. Let 4 = {(y, y): ye Y} be the diagonal of ¥* and put
E, = (D, xD,)n4 and W, = H,n4. The mapping h: 4—Y, defined by
h(y,y) =1y, is clearly a homeomorphism and we have D, = h(E;) = h(W,)
= U,, which contradicts the regularity of 2, since the family {U,}.s
of open subsets of Y is point-countable.

In the sequel we shall also need the following easy lemma:

LEMMA 2. If {2;}4er 18 @ family of points of Z and if U = {U,}y.r 18
a g-locally finite family of open subsets of Z such that ze U, for teT and
2,4 U, for t + r, then there exists a disjoint family {V },.p of open subsets
of 7Z such that z,eV, for teT.

Proof. Let # =\ #,,, where the families %, are locally finite.

n<ow

For every teT find an n(t) < w such that Uje %,,. It suffices to put

n(t) —
Vi=UNU U{U,: Upe;,r #t}.
i=1

3. Basic construction. Assume E(w,) and let § be an arbitrary subset
of the unit interval I = [0,1], which has cardinality w,, contains the
set @ of rational numbers of I, and satisfies the condition: 1 —se S if
se 8. In this section we shall use S to construct a first countable, para-
compact space X such that X*® is collectionwise Hausdorff, but not
collectionwise normal.
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Our construction depends heavily on the methods developed by
Fleissner in [6] and on the approach of R. Pol, who first used regular
decompositions to obtain examples of collectionwise Hausdorff non-
collectionwise normal spaces (unpublished).

By Pol’s theorem, there exists a regular decomposition 2 = {D,: se 8}
of B indexed by 8. Define a family & = {E;: se¢ 8} of subsets of B
by putting

B if se@,

° D,uD,_, otherwise.

Clearly, we have
(4) E,=E,_, and D,c E, for se8,
and it follows easily from Lemma 1 and the countability of @ that

(5) If f: 6¥—B? is a function of choice, i.e. if f(E,x E,)e E, x E, for
(8, 7)e 82, then the set f(6?) = {f(E,x E,)| (s,7)e 8%} is o-discrete
in B2

Let us consider the set 8 with the topology of the subspace of the

Sorgenfrey line (see [4], Example 1.2.1). Since § is first countable, perfectly

normal and paracompact, and B is metrizable, the product space S x B

is also first countable, perfectly normal and paracompact (Michael [10]).

Let

X =Xs=U ({s} xE,)
geS

be the subspace of S x B. Naturally, the space X is dense in 8 X B and

Z = X? is contained in (S x B)* which is homeomorphic to 82 x B We

shall denote by = the projection of (S x B)* onto B

I. The space X* is collectionwise Hausdorff.

Let Zy = {2,};.p be a discrete subset of Z = X? and let ¢ be a o-locally
finite base in B. For every teT the point 2, has the form z, = (s;, b, s/, b;),
where (s, 87)e 8% and (b, b;)e E, X Eg < B As Z, is discrete, for every
teT there exists an open subset H, of (8 x B)* such that

(6) zeH, and z¢H, fort #r.
Find elements Gy, G; ¢ 4 such that
(7) bieGy, bie@ and {s} xGx {8} xG; c H,.

Let us fix a pair (@, @*)e 4* and put T (G, @) = {teT: G, = G and
@] = G*}. Clearly,

T = (6, 6.
(8) (G’GL‘{M ( )

It follows from (6) and (7) that if f,7¢T(G,G*) and ¢ = r, then
(85 87) 7 (84) 87)-
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Hence the function f = fig g defined for teT(G,G*) by
f(Est XEs;) = (by, b;)e Est X Es}
is a part of a function of choice on &% and hence — by (3) and (7) —
the set {(by, bys)}lierig,v) i o-discrete in B* and is contained in G xG™.
Since B? is metrizable, there exists a o-discrete in B? family
{W(G, G")};er@,qv Of open subsets of B® such that

(9) (b, b)) W, (G, G*) = W, (G, GF} =« Gx G for 1T (G, GY).
It follows from (8), (9) and the o-local finiteness of the family ¢® =
= {G X G*)(G,G-)¢g2 that
(10)  the family ln_l(“lvt(G7-G*))}(G,G')efiz,lcT(G,G‘) = ‘n_l(“'l(GtaG?)”teT
is o-locally finite in (S x B)2
For teT define open subsets U, of X* by
U, = Hna™ ' (W,(Gy, GF)) N X2

By (10) the family {U,},., is o-locally finite in Z = X* and from (6)
and (9) we infer that z,¢ U, and that if ¢ # r, then 2,4 U,. By Lemma 2
there exists a disjoint family {V,};,.r of open subsets of X*® such that
z,¢V,, which proves that X? is collectionwise Hausdorff.

Remark 1. Making use of an adequate generalization of Lemma 1,
one can easily prove that in fact X* is collectionwise Hausdorff.

II. X? 4s mot collectionwise normal.

Since the set {(s,1—s8)},.s is discrete and closed in 8%, the family
{F,}ses Of closed subsets of X? where F, = {s} x E,x{1—8}x E,_,, is
discrete in X2 If X? were collectionwise normal, there would exist a dis-
joint family {U,},.c of open subsets of X* such that F, < U,. Let V,,
se S, be open subsets of (8 x B)? sueh that V,nX* = U,. From the density
of X? in (8 x B)* we deduce that the family {V,},.¢ is also disjoint.

The family {H,},.s of open subsets of B?, where H, = =n(V,), satisfies
the following conditions:

(11) D, xD,c E,xE, =E,xE,_,< H,,
(12) {H,},s is point-countable.

Condition (11) follows immediately from (4) and the inclusion F, < V,.
To prove (12) it suffices to observe that the space 82 is separable and
that for every y e B? the space 7~ '(y) is homeomorphic to S* and, therefore,

it can intersect only countably many elements of a disjoint family {V,},cs-
The existence of the family {H,},.s contradicts (3).

4. Construction of Examples 1 and 2.

Construction of Example 1. Assume E(w,), Martin’s Axiom and the
negation of the Continuum Hypothesis. It is known that Martin’s Axiom



54 T. PRZYMUSINSKI

\

and the negation of the Continuum Hypothesis imply the existence of
a subspace A of I of cardinality o, such that its every subset is a relative F,
(see Tall [15]). By putting § = AU{l —a: ae A} UQ we can find a subspace
S of I with the above-mentioned properties, containing ¢ and sa.tlsfymg
the condition: 1 —se 8 if se 8.

Let us use 8 to construct the space X = X, as shown in Section 3.
We already know that X is first countable and paracompact and that X2
is collectionwise Hausdorff but not collectionwise normal. It suffices to
show that X? is perfectly normal. From Przymusinski [14] we infer that
the space 8% is perfectly normal, assuming that § is considered with the
topology of the subspace of the Sorgenfrey line. Therefore the space
8*x B?, containing X?, is also perfectly normal (Morita [12]), which
completes the proof.

Remark 2. In fact, as it follows from Alster and Przymusinski [1],
the space X® is perfectly normal. Hence, by Remark 1, the space X
is collectionwise Hausdorff and perfectly normal, but not collectionwise
normal.

Construction of Example 2. Assume E(w,) and the Continuum Hypo-
thesis. By Michael [11], Continuum Hypothesis implies the existence
of an uncountable subspace A of I such that A > @ and if U is an open
subset of A containing @, then |[AN\U| < w,. Putting § = Au{l —a: aecd}
we can find a subspace S of I with the above-mentioned properties
satisfying additionally the condition: 1 —se S if se 8.

Let us use S to construct the space X = Xg as shown in Section 3.
It suffices to show that X? is perfect and non-normal. The perfectness
of X? follows from the fact that the space S? where § is considered with
the topology of the subspace of the Sorgenfrey line, is perfect (Heath
and Michael [7]), which implies that the space 8*x B? containing X2,
is also perfect (Michael [10]).

We shall prove the non-normality of X?. Assume on the contrary
that X? is a normal space. The sets C = {(8,1—8): 8¢Q} and D =
{(s,1—8): 8¢ 8\@Q} are closed and disjoint in S%, hence the subsets

K = aLGJQ ({8} xE,x {1—8} X E,_,)
and

L=U ({s}xE,x{l—-s}xE_,)
8¢S\Q

of X* are also closed and disjoint. Therefore there exist open subsets
U,, Vo, of X* such that K =« Uy, Lc Vyand UynVy, =@. Let U and V
be open in (8 x B)? and such that UnX® = U, and VnX® = V,. From
the density of X* in (8 x B)* we deduce that UNnV =@. For se¢ S and
n=12,... let U,(8) =[s,8+1/n)NS be basic neighbourhoods of the
point s in §.
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Put
H,(n) = U {G@xG": G,G* are open in B
and U,(8)xGx U,(1—8)xG* < V}.

Clearly, H,(n) are open subsets of B* and
(13) H,=\J Hyn)>E,xE,_,=E,xE,o>D,xD, for se S\Q.
n=1

For se Q put H, = B® By the countability of , to obtain a contra-
diction with (3) and hence to complete the proof, it is enough to show
that for every n =1,2,... the family {H,(n)}, s\ i8 point-countable,
since this implies that the family {H,},.g is also point-countable.

Fix ann = 1,2, ..., choose a point (b, b*)e B? and let S, = {s¢ S\Q:
(b, b*)e H,(n)}. If S, were uncountable, then by the definition of 8 there
would exist a ge S,NQ, where S, denotes the closure of S, in the euclidean
topology of 8. Therefore we could choose a sequence {s,}m-; of points
of §, converging in a usual sense to ¢. In such a case we would have

00
V2> U (U, () X {8} X Up(1 =) x {57}
[ T
and, consequently, the point (q,b,1—gq,b*)e K would belong to the
closure of V, which is impossible.

5. Construction of Example 3. Assume E(w,) and let 2 = {D,:
a < w,} be a regular decomposition of B. Take an arbitrary space Y
with the following properties:

(i) Y is perfectly normal;

(i) Y contains a closed, discrete subspace Z = {2,: a < w,};

(iii) the space Y\Z is discrete;

(iv) every disjoint family of open subsets of Y intersecting Z is
countable.

For instance, the well-known Bing’s example [2] of a perfectly normal,
non-collectionwise normal space has the above-mentioned properties
(continuum should be replaced by w,).

Let X be a subspace of a perfectly normal space Y x B (Morita [12])
defined by .
X = ((¥\Z)x B)u U ({2} x D,).

a<w)

The proof that the space X is collectionwise Hausdorff but not
collectionwise normal is similar (though simpler) to the proof of the
analogous properties of the space X = Xg considered in Section 3 and,
therefore, is omitted (cf. also Fleissner [6], Example F).
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Remark 3. Note that in all our examples it sufficed to assume the

existence of a metric space M having a regular decomposition of cardi-
nality o, instead of the more restrictive condition F(w,).

PRrROBLEM 1. Does there exist a (separable?) paracompact space X

such that X? is collectionwise normal but not paracompact? (P 984)

PROBLEM 2. Does there exist a “real” example of a perfectly normal

and collectionwise Hausdorff space, which is not collectionwise normal?
(P 985)
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