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Fuchs [3] has shown that to each universal algebra A = (4; F)
with a given system B of subsets satisfying certain conditions (“system
of r-ideals”) there corresponds a lattice ordered algebra B = (B; ¥, A, v)
such that all operations feF' are isotone. He proved that the construction
of the lattice ordered algebra B enables one to generalize the classical
theorems on ideals in commutative rings to the case of universal algebras
([3], part 2).

In this note we consider the following problems (raised in [3];
for exact formulation cf. section 1.2): how can algebras B, cons-
tructed in this way, be intrinsically characterized, and under which
condition A is uniquely determined by B? Analogical problems for
ideals in semilattices and for ideals in Boolean algebras were studied by
Nachbin [5].

1. BASIC NOTIONS

1.1. For the partially ordered algebras we shall use the terminology
of [1] and [2]. The symbols ~, v and A, v denote the set-theoretical
and lattice operations, respectively; A — B means that 4 is a subset
of B (the equality being not excluded). The cardinality of a set M is
denoted by card M.

Let A = (A, F) be any algebra. Suppose that to each suibset X <« 4
there corresponds a subset X, ¢ A such that the following conditions
are satisfied:

1° X c X,.

2°Xc?¥Y =X, c¥,.

3° X, = JY,, where Y runs over all finite subsets of X (i.e ope-
ration X — X, is a generalized closure operator of finite character).

Then the system B = {X,}x—4 i8 a system of r-ideals of .



32 J. JAKUBIK

B is partially ordered under set inclusion. It is known (cf. [3])
that B is a complete lattice satisfying

(1) A= NI,
(2) \/IX‘ = (g X),= (g xX;),.

If feF is an m-ary operation and if X;,..., X7 eB, then we put
(3) f(XL, ..., X)) = {f(2, ..., 2"): o' X}},.

The operation f defined on B is isotone; by this we mean that from
X;, Yi eB,X; c Y. (i =1,...,n) it follows that f(X;, ..., X}) < f(Y}, ...
..., Y7). We get a lattice ordered algebra B = (B; F, A, v) = J(U, B)
It B is fixed, then we write also J (%) instead of I (U, B).

Remark. In the definition of an r-system given above X is any
subset of A; if we consider only non-empty subsets X — 4 and if for
these subsets conditions 1°, 2° and 3° are satisfied, then the system
8 ={X,: X « A, X # O} need not be a lattice. For example, if A4 is
any set with card A >1 and if for any X <« 4, X # O, we put X, = X,
then the system S is not directed by relation o.

According to 2°, @, < X, for any X <« A. A system {X,}x., of
r-ideals is said to be regular if @, = @. (If we put X, = A for any X < A4,
then the system of r-ideals {X,}x.4 = {4} is not regular.)

1.2. The problems formulated by Fuchs in [3] are as follows:

(a) Under what conditions an algebra (B; G, A, v) can be obtained
from an algebra (A; F) with G@ < F as an r-ideal system?

(b) Under what conditions does the isomorphy of r-ideal systems
imply the isomorphy of the algebras from which they were constructed ?
It is remarked in [3] that if (B; @, A, v) satisfies the condition
given in (a), then each element of the lattice (B; A, v) is a join of compact
elements (cf. also Nachbin [6]). (An element ¢ of a lattice L is compact
if e< _\éwi implies the existence of a finite subset I, < I satisfying
e
c< \1/ 2;; L is compact, if each element of L is ecompact.)

te.

C:)rna,yové, [4] has solved problem (a) in the case when (B; A, v)
is a compact lattice (this solves, in particular, problem (a) for finite alge-
bras B). In theorem 3.3 necessary and sufficient conditions are given
under which an algebra B fulfils the requirements of (a). In 3.4 we prove
that to each algebra A = (A; F') with a given system of r-ideals B it
is possible to construet an algebra A = (A’; F) with a system of r-ideals B’
such that the algebras W and A’ are not isomorphic and the systems of

r-ideals 4 (A, B) and S (A’, B’) are isomorphic.



LATTICE ORDERED ALGEBR.S 33

In section 2 we shall deal with questions depending on the lattice
operations only; the problems concerning the operations feI' are treated
in sections 3 and 4.

2. THE LATTICE OF r-IDEALS

2.1. Let A be a non-empty set. If to cach subset X < A there
corresponds a set X, = A such that the conditions 1°, 2° and 3° are
satisfied, then the system B = {X,}yx. uniquely determines the set X,
for each X <= A, since X, = ()Y, where Y runs over all subsets of A
fulfilling X < YeB.

Suppose now that B is a system of subsets of A such that 4B and
M X'eB for each subsystem {X'};; =« B. For any X = A we denote
iel
by X, the meet of all X'¢B with X = X'. The system B is said to satisfy
the conditions 1°, 2° and 3°, if the correspondence X, — X fulfils these
conditions. In such a case the complete lattice (B; A, v) (cf. (1) and (2))
is a lattice of r-ideals on the set A; we denote it by J,(A4, B). Let K(A, B)
be the system of all X,, where X is a finite set.

We need the following simple lemma (cf. also the remark from [3]
cited in 1.2):

2.2, Let (B, An,v) = 3,(A, B). Then the following statements hold:

(ay) Each set X,eK(A, B) is a compact element of the lattice B.

(oy) Each element of the lattice B is a join of some elements of K(A, B).

(ag) If X', X2¢K (A, B), then X'vX? also belongs to K(A, B).

Proof. If X =@, then, according to 2°, X, < Y, for each ¥ < 4,
hence X, is compact. Let X =« A be a finite non-empty set. Suppose
that X, « V X' and {X'};; < B. Put (JX' = Y. Then

iel el
VI =Y, = (Y,
Tel JeJ

where {Y’};, is the system of all finite subsets of Y. Therefore for each

weX there exists a j(x)eJ such that ze(Y'™),. We write ¥° = (J Y/®.
. R xreX
Since the sets X and Y’ are finite, the set Y° is also finite. For each ye Y°

there exists a i(y)el with yeXiy); put I° = {i(y)}yro. The set I = I
is finite and for each x¢X we have

ze(Y®), < (Y°), (UOX“”)), =V X"

VeY iel®
v

Hence X < \/oXi and therefore X, c \/OX". This proves («,). Let
tel tel
now X, be any element of the set B; for X,¢K (A, B) condition

Colloquium Mathematicum XX.1 3



34 J. JAKUBIK

(xp) is trivially satisfied and for X ¢K (A, B) this condition is im-
plied by

X, = V(Z),
jeJ

where {Z;};.; is the system of all finite subsets of the set X.

Let YY< A (i=1,2) be finite sets, X’ = Y:. Since X'v X?
=(Y'v Y?),, we get X' v X*¢K (A, B).

Remark. The statement dual to («;) does not hold in general. To
show this let A be an infinite set, a,, a,c A4, a, # a,. Put Z = A\{a,, a,}.
¥ XcZ, let X,=X. If X~ {a,,a,} #9, we put X, =27 o X,
Then conditions 1°, 2° and 3° are satisfied, {a;},¢eK(4,B), :i=1,2,
but {a,}.r{a,} =Z¢K(A, B).

Throughout the paper let ° be the least element of the lattice B.

2.3. THEOREM. Let B be a complete lattice, B, = B. The following
conditions («) and (B) are equivalent:

(o) There exist a set A, a system J,(4, B,) of r-ideals satisfying
1°, 2°, 3°, and an isomorphism ¢ of the lattice J,(A, B,) onto B such that
¢(K (4, By)) = B,.

(B) For B, the following assertions hold true:

(i) each beB, is a compact element of the lattice B;
(ii) for any zeB there exists a subsel Z < B, with z = supZ;
(iii) the join of any two elements of B, also belongs to B,.

The implication («) = () has been proved in 2.2. The converse
implication is a consequence of the following lemmas 2.4, 2.5 and 2.6.

2.3.1. Remark. If Z =0, then supZ = b°. This implies that if
a get B, — B satisfies conditions (i) and (ii) (or (i), (ii) and (iii), respectively)
and if B, # {b°}, then the set B,\{b°} satisfies these conditions, too.
If B fulfils (ii) and B, = {°}, then B = {°}.

2.4. Let B be a lattice,  + A < B. For each X <« A put

X, = {yeA: there exists a finite set X, ¢ X such that y < supX,}.

Then the system B, = {X,}x.4 satisfies conditions 1°, 2° and 3°.

Proof. 1° and 2° obviously hold. Let us consider condition 3°. Let
XcA, X #0 (for X =@ condition 3° clearly holds) and let {Y'}i;
be the system of all finite subsets of X. According to 1° and 2°, ¥; < X,,
hence | JY: c X,. For each yeX, there exist elements ,,...,#,eX

b 4

such that y <& v ... v &,; pub Yo = {1y ..., @,}. Then erio, hence
X, <« UY:.

iel
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2.5. Let B, be a subset of a complete lattice B satisfying conditions
(i) and (ii). Let B, have the same meaning as in 2.4, where A = B,. For
each X,eB, and each beB let

o(X,) =supX,, 7(b)={acd:a <b}.

Then ¢ is an isomorphism of the lattice B, onto B and v = ¢~ .

Proof. Let beB, 7(b) = X. According to the construction from
2.4, X, = X, hence 7(b)eB,. By (ii), supz(b) = b, hence ¢(r(b)} =b
and therefore ¢ is a mapping of B, onto B. Let YeB,, ¢(Y) = b. Then
supY = b, hence Y < 7(b). Let aer(b). Since a < sup Y and since the
element @ is compact (by (i)), there exists a finite subset ¥, = ¥ such
that a < sup Y,. From this it follows that ae¢Y, = Y, hence 7(b) c Y.
Therefore 7(b) = Y and the mapping ¢ is one-to-one. From tp(‘t(b)) =b
we get now that v is onto and v = ¢~'. According to the definition of ¢
and v both ¢ and v are isotone. The proof is complete.

2.6. Let B, be a subset of a complete lattice B satisfying (i), (ii) and
(iii). Let A, B,, ¢ have the same meaning as in 2.5. Then <p(K(A,B1))
= B, v {b%}.

Proof. Let XeK(A, B,). Then either X =@, or X has the form
X = {a),...,a,}r, a;¢A. In the first case X is the least element of B,,
thus according to 2.5 ¢(X) = b°, b®cp(K (4, B,)). In the other case
write b = a, v...v a,. According to 2.4, X, = X is the set of all yed
with y < b. By (iii), be A, hence b is the greatest element of the set X.
We get b =¢@(X)eB, and ¢(K(4, B,)) < {b°} v B,. If byeB,, then
{bo}r<E(4, By) and g({be}y) = b,, hence ¢(K(4, B,) = B, v {0%.

2.6.1. The system of r-ideals J,(A, B,) constructed in 2.5 is regular
if and only if b°¢B,.

Proof. As sup @ = b°, we have, according to 2.4, either @, = {b°}
(if b°eB,) or B, = O (if b°¢B,).

From 2.2 and 2.5 follows

2.7. THEOREM. Let B be a complete lattice. The following conditions are
equivalent:

(B1) There exist a set A and a lattice of r-ideals I (A, B,) such that
the lattices B and J,(A, B,) are isomorphic.

(B2) There exists a subset B, = B satisfying (i) and (ii).

2.7.1. Let B be a complete lattice, card B > 1. Then (B,) 18 equivalent
to the condition

(Bs) There exists a set A and a regular system J,(A, B,) of r-ideals
such that B and J,(A, B,) are isomorphic.

Proof. According to 2.7, (8;) = (B,). Let us suppose that (fB,)
holds. Since card B >1, we get B, # {b°} by 2.3.1. If b°¢B,, then,
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by 2.6.1, (B;) is fulfilled. If b°¢B,, we take B,\{b°} instead of B,
(cf. 2.3.1).

Let us now suppose that B is a complete lattice satisfying (B,). The
following question seems to be natural: how can all latitces of r-ideals
3.(A%, B*) be constructed which are isomorphic with the lattice B?
An answer is given in 2.8 and 2.9.

2.8. Let 3,(A, B,) be a lattice of r-ideals. For each aeA let M, # O
be a set such that My ~ My, = O for distinct a,, a,eA. Let A= M,
and, for any subset X < A’, let aed

X(A)={a:aed, X ~ M, + O}
and

X, = U M,
ae(X(4)),

Then

(a) the system B = {X,}x..¢ fulfils conditions 1°, 2° and 3°;

(b) the mapping p(X,) = X,.(A) is an isomorphism of the laitice B,
onto B,.

Proof. The first assertion is an immediate consequence of the fact
that for B, the conditions 1°, 2° and 3° hold. To prove the other, it suffices
to take into account that a set X = 4’ belongs to B; if and only if
X(A)eB, and X = U M,.

aeX(4)
2.8.1. Let B be a complete lattice satisfying (B3,). Let A, B,,¢, 1
and A’, By, v have the same meaning as in 2.5 and 2.8. Then ¢y is an
isomorphism of the lattice B, onto B. For each X B, and each beB

() (X) = sup(X(4)), (pp) ' (b) = Ldn M,.

This follows from 2.5 and 2.8.

Further we shall prove that if a complete lattice B satisfies (B,),
then every isomorphism f: J,(A*, B*) — B can be composed of suitable
isomorphisms ¢ and y that are constructed as in 2.5 and 2.8.

2.9. THEOREM. Let B be a complete lattice and let J,(A*, B*) be
a lattice of r-ideals. Let f be an isomorphism of B* onto B. Write

Bo = {f({a*}r)}a‘sA" ‘M-a = {0/': ‘f({a‘lk}r) = a’] .

Let the symbols A, B,,¢ and A', B}, y have the same meaning as
i 2.4 and 2.5, respectively. Then

() A*=4", B'=B,
(b) [ =%op.
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Proof. Let B; be the system of all sets {a*},, where a*eA*. Accor-
ding to 2.2, {a*}, is a compact element of the lattice B*. It is easy to see
that

X* — V {w*}r

xreX*
for each X*eB*, X* £ 0.

It follows now from the isomorphism f that the system B, = f(By)
fulfils (i) and (ii), hence, according to 2.5, ¢ is an isomorphism. Moreover,
if @, a¢A = By and a, # a,, then M, ~ M,, = @, thus the assumptions
of lemma 2.8 hold. At the same time we have A* = A’.

Let us now consider the isomorphisms

B % B, % B B

The mapping g = » "¢ 'f is an isomorphism of B* onto B;. Let
X*eB* and g(X*) = Y. Let us recall that both X* and Y are subsets
of A*.

Let a*eX*. Write f(X*) = b and f({a*},) = a. Since {a*}, c X*,
it follows from the isomorphism f that f({a},) <b. If a,e4 and a;, < b,
then there exists an a}edA* such that a, = f({ai},) and {a}}, = X*,
hence aj ¢ X*. This proves the equivalence
(4) aetr(b) <> a = f({a*},) for some a*eX*,
where v has the same meaning as in 2.5. Further we have (cf. 2.8.1)

9(X*) =y~ (7(0) = U Mo,
aez(b)
hence, according to (4) and by the definition of M,, we get ¢(X*) = X*.
This implies B; = B*. Moreover, since g is the identity mapping, f = gy
holds. ’

+ 2.10. Recall that the subset B, of a lattice B is not uniquely deter-
mined by conditions (i) and (ii). If, for instance, B = {a, b, u, v), where
anb=u, avb=o,then both sets B,;, = B and By, = {a, b, v} fulfil (i)
and (ii). In spite of this we have:

2.10.1. If a subset B, of a lattice B satisfies conditions (i), (ii) and
(iii), then B, o {b°} is the set of all compact elements of B.

Proof. According to (i) it suffices to verify that each compact
element beB, b + b°, belongs to B,. By (ii) for each compact element
beB, b £ b°, there exists a finite subset {b,,...,b,} = B, such that b =
b,v...v b,. From (iii) we now get beB,.

2.11. Let B be a lattice of r-ideals of a set A. Then K (A, B) is the
set of all compact elements of B.

Proof. According to 2.2 we have only to show that each compact
element of B belongs to K(A4, B). Let X be a compact element of the
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system B. If X = @,, then clearly X K (4, B). If X #@,, then X = \/{z},,
reX
hence there exists a subset {z,, ..., #,} = X such that X = {z,}, v...v {@.},.
Since {#1}r V...V {@p}r = {%1, ..., Tu}r, We get XeK (4, B).
3. SYSTEMS OF r-IDEALS IN UNIVERSAL ALGEBRAS

3.1. Let (B; F, A, V) be a system of r-ideals of W = (A, F). Let
feF be an n-ary operation, X', ..., X"eB and B, = K(A, B). Then

(5) f(Xy, ..., X" = Vf(Y,..., Y,
where X* runs over the system of all subsets of X* (i = 1, ..., n) which belong
to B,.

Remark. We suppose that F' does not contain nullary operations
(if # would contain a nulary operation f = a<A, then we take instead
of f a “constant” unary operation whose value is a; this change is not
essential for our considerations).

Proof. Put X = f(X*,..., X", Y = Vf(¥Y',..., Y") and write
Z = Nf({#Sry ..., {&"})y

where #° runs over the set X (i = 1, n). Since {z" }, c X'and {w Y, eBy,
we have Z = Y. For any system of elements teX' (i=1,...,n)

f@, ..., a"elf(0, ..., v"): vefa’))r = F({2Yy .- oy {&"))

holds true, hence {f(«', ..., 2"): #'¢X’} = Z and therefore X = {f(«', ...

ey @) weX‘},.cZ From Y'c X' we infer that f(Y,...,¥" c
':f(Xl ., X™), hence \/f(Y?,..., Y") < f(X',..., X"). We have shown
that Y < X cZ < Y; the proof is complete.

3.2. Let (B; G, A, v) be an algebra such that (B; A, v) is a com-
plete lattice and each ge@ is isotone. Let B, be the set of all compact
elements of B and suppose that each element beB is a join of some
elements of B,. Let us further suppose that the following condition is
satisfied :

(iv) If ge@ is an n-ary operation and if b!,...,5"eB, then

(5') g(blw-"bn)=Vg(a’17-'°7a’”)r

where a‘ runs over the set of all elements which belong to B, and are
less than or equal to b (s =1,...,n).

The basic idea of the construction we are going to perform follows.
We put B, = A and construct a system B, of subsets of A as in 2.4 and
then a system J3,(A4’, B;) as in 2.8. According to 2.8.1 the lattices B
and B; are isomorphic. For the sets M, (that were used in 2.8) we take
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the sets M, = {(a, m)}m.u, where M is a fixed set with card M > card B,.
We define in a suitable manner the operations geG@ on the set A’, and
in this way we get an algebra % = (A’, @) with the system B, of r-ideals.
We construet now the algebra J (U, B;) = (B;; @, A, v) as in 1.1 and
examine the behaviour of the mapping ¢’ = ¢y : B, — B with respect
to the operations geG.

For beB let 7(b) bave the same meaning as in 2.5. Since, by our
assumption, card v(b) < card B, < card M, there exists a mapping h, of
the set M onto v(b). Let m® be a fixed element of M.

Let g<@ be an n-ary operation; we define g on the set A’ as follows.
Let #'cA’,a* = (a’, m’), d’cA, m'eM (i =1, ...,n) and g(al, ..., a") = b.
We put
(6) g(@ty ..., ") = (hy(m?), m9);

by (6) and (3) the operations ge@ are defined on the set B;, too. Write
¢ ~' = y. According to 2.8.1,

2(b) = (D)X M.

Under our assumptions the following statements 3.2.1 and 3.2.2
hold true:

3.2.1. If b, ...,b"eB and g(b*,...,b") = b, then g(x(bY),..., x(d")
= 2(b).

Proof. Let (a, m)ex(b). Then ae Byand a<< b, hence a < \/g(al,...,a"),
where the meaning of a' is as in (5'). Since @ is compact, there exists

a finite subset {g(aj,...,a})}_,..m of the set {g(al,...,a")} such
that

a< V g(a}, a’i)

m
Put \ a; = d'. Since a; < b*, we get &' < b* and d'eB, (clearly B,
i=1
is closed with respect to finite joins). The isotony of the operation g¢

implies g(aj, ..., a;) < g(d*,...,d"), hence

11/19(“}’ ya5) < g(d', ..., d").

We thus obtain
(7) a<g(d,...,d") =d.

From (7) it follows that there exists an m'eM such that hg(m?) = a.
Choose any elements m?, ..., m"eM and put &' = (d',m") i =1,...,n).
By (6)

(8) g(@, ..., a") = (a, m°).
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Since d' < b', we obtain 2’y ('), hence, by (8), (a, m®) eg(x(bY), ...,
..oy 2(b™)). The relation g(x(bY), ..., x(b"))eB; implies (according to 2.8)
that (a, m)eg(x(bY), ..., x(b"). We have thus derived x(b) < g(x(bY), ...,
ey 2 (M),
Let us further write
{g(et, ..., x"): 2" ex(b")} = Z.

The elements '€y (b’) are of the form a' = (a', m'), a’ < b', a'eB,.
By the isotony of ¢, g(at,...,a") < g(b,...,b") = b. Hence, according
to (6), g(z',...,a") = (b', m®, where b < b. Therefore Z(A) < v(b);
since t(b)eB,, we obtain (Z(A)), < 7(b). By 2.8 this implies Z, < 7(b) X
X M == x(b). Using (3) we get the equality g(x(b'), ..., z(b")) = Z,, hence
g(x(dY), ..., (")) = x(b). The proof is complete.

3.2.2, The mapping ¢’ : B, - B is an isomorphism with respect to
the lattice operations and with respect to the operations geG.

Proof. The first assertion follows from 2.8.1 and the other from
the fact that ¢’ == ™' is an isomorphism with respect to each geG.

3.3. TiEorREM. Let B = (B; G, A, v) be an algebra, where (B, A, V)
is a complete lattice and each geG is isotone. Then the following conditions
are equivalent:

(v) There exists an algebra N = (A, Q) and a system B, of r-ideals
of N such that B is isomorphic with J (A, B,).

(8) Each element of (B; Ay V) 18 a join of compact elements and B
satisfies (iv). _

Proof. The implication (y) = (3) follows from 2.2 and 3.1, the con-
verse implication follows from 3.2.2.

Remark. Let 8 = (B;G, A, v) be an algebra, where (B; A, V)
is a complete lattice and each ge@ is isotone. Suppose that each element
of (B; A, v) is a join of compact elements. In general, B need not satisfy
condition (iv). For example, let B be the system of all subsets of an infi-
nite set P (B is partially ordered by the inclusion). Obviously, each element
of B is a join of compact elements. Let & consist of a single unary ope-
ration ¢ defined as follows: g(X) = O if X is finite and ¢g(X) =P if X
is infinite. Then ¢ is isotone and condition (iv) does not hold.

3.3.1. LetB = (B; G, A, v) be an algebra, where (B; A, v) is a com-
plete lattice, each operation geG is isotone and card B > 1. The following
conditions are equivalent:

(v1) There exists an algebra A = (A; G) and a regular system B, of
r-ideals such that B and I (W, B,) are isomorphic.

(3,) B fulfils (8), and, for any n-ary operation g G and any b, ..., b" B,

g(bt, ..., b") = b® = there exists an ie{1, ..., n} such that b* = b°.
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Proof. Let B, be a regular system of r-ideals of algebra A = (4; G)
and let geG be an mn-ary operation, X'e¢B, (i =1,...,n). Clearly,
g(X1, ..., X") = O if and only if at least one X' is the empty set. From
this and from 3.3 we infer that (y,) = (8,). Conversely, suppose that
(3;) holds and card B > 1. Then we can modify the consideration in 3.2
and 3.3 by taking the set B,\{b°} instead of B, (cf. also 2.3.1). According
to 2.6.1 we get a regular system of ideals.

Now we shall make use of the fact that the cardinality of M (cf. 3.2)
has to fulfil the condition card M > card B, only.

3.4. TUEOREM. Let W = (A;G) be an algebra with a system B of
r-ideals, card A = a, max{a, R} = . For each cardinal y = there
exists an algebra W, = (A,; G) with a system B, of r-ideals such that
J(A, B) and J(N,, B,) are isomorphic and card A, = y.

Proof. We start with the algebra A = (4; G) and we construct
B = (B;G, A, v) as In section 1. Let B, have the same meaning as
in 2.2. The power of the set B, is less than or equal to the power of the
system of all finite subsets of A4, hence card B, << . We now consider
the algebra (A’, @) = As that is constructed as in 3.2 (with G instead
of F'), where we choose the set M = M, so that card M, = y > f. Since
A' = B, X M, we obtain card A’ < fy = y. According to 3.2.2, the algebras
J(A) =B and IJ(A) are isomorphic.

COROLLARY. To every algebra N = (A; F) with a system B of r-ideals
there exists an algebra W = (A'; F) with a system B’ of r-ideals such that
the algebras J (U, B) and J(WA', B') are isomorphic but W and W are not
isomorphic.

3.5. Let A = (A4; F) be an algebra. If fel' is an nm-ary operation,
we put k(f) = n. Let f, ..., fueF, k(f;) = m;; we denote by h the ope-
ration satisfying

1 1 i 1
h(@1y oeny Gusonns 67y ooy @) = f(folary ooy @)y oony fulal, ooy an,)

for any aled J=1,...,n, ¢ =1,...,m;). As usual, the operation &
is denoted by f(f,,...,f.). Let F, be the set of all operations that can
be constructed in this way. Let us further put ¥, = F v F,. By induction
we construct the sets ¥, and F; (I = 2,3, ...; by forming the operations
heF; we suppose that f, fi, ..., fneFi_ ). Let F = (J F,.Let Rc FxF

n=1,2,...

and suppose that k(f,) = k(f,) for each pair (f,, f,)eR. The algebra A
is said to satisfy the system R if f,(a,,...,a,) = fi:(ay, ..., a,) for any
pair (f,,f;)eR and any system a,, ..., a,ed (with k(f,) = n). Let C(R)
be the class of all algebras (A; F') which satisfy the system K.

Assertion 3.4 is a corollary of the following theorem which can be
proved in a simple way without using 3.2.2 and 3.3 (i.e., without con-
structing the set A’'):
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3.9.1. THEOREM. Let A, = (A, F)eC(R), card A, = a. Let B, be
a system of r-ideals of A. For each cardinal f > 0 there exists an algebra
N, = (A,, F)eO(R) and a system B, of r-ideals of A, such that the algebras
3, B,) and J(A,, B,) are isomorphic and card 4, = aff.

Proof. Let f§ > 0 be a cardinal and let M be a set with card M = f.
Choose a fixed element m%«M and write A, = A, X M. If feF,k(f) =n
and y*' = (a', m")ed (1 =1,2,...,n), we define f(y',...,y") = (a, m?),
where a = f(al,..., a"). The algebra A, = (4,, F'), obviously, satisfies
the system R. If X < A4,, let X(A4,) be the set of all elements aed,,
such that there exists an meM with (a, m)eX. For any X < 4,, put
X, = (X(4,)XM. Let B, ={X,: X c A,}. It is easy to show that
the algebras I (A,, B,) and I (A,, B,) are isomorphiec.

4. THE S8YSTEMS OF CLOSED SUBSETS

In the previous paragraphs we did not suppose any connection
between the system B of r-ideals and the system of operations F of the
algebra A = (A; F'). A subset X of A is closed with respect to the system ¥
if f(al,...,a")eX for any feF and any a,,..., a,eA (where n = k(f)).
For X <« A we denote by [X]r the intersection of all sets ¥ which are
closed with respect to F and satisfy X <« ¥ < A. Let us consider the
following conditions for a system B of r-ideals:

(1) [X]r =« X, for any X c 4,
(og) [X]lp =X, forany X cA,X #@.

4.1. Let N = (A, F) be an algebra with a system B of r-ideals satisfying
(). Then f(X,..., X) =« X for any X eB and any operation feF. -

Proof. Let feF', k(f) = n, X eB. Since f(X, ..., X) = {f(®@1y ..., @):
z;eX},, and z;eX implies f(x,,...,%,)eX, according to condition («,)
we get f(X,...,X) c X, = X.

4.2. Let B = (B; G, A, v) be an algebra, where (B; A, V) i8 a com-
plete lattice and each operation geG is isolone. Suppose that condition (3)
from 3.3 is satisfied. If g(x,...,x) <& for any xeB and each ge@, then
the system B, of r-ideals on A’ described in 3.2 fulfils the condition [X]g < X,
for any X < A’.

Proof. Suppose that g(z,...,z) <2 for any ge¢@ and any zeB.
Let X c A' X =0,then [X]g =0 c X,. Let X # 0. Since X < X,,
it suffices to prove that X, is closed with respect to the system G. Write

x = sup (X (4)).
Then

X, = z(2) X M.
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Let ge@, k(g) = n, #* <X, and 4* = (a’, m%), i =1, ..., n. Under the
same notations as in 3.2 we have a’' < (since a‘eX(4)), therefore
b=g(aly...,a") < g(x,...,2) <2x. From this we get hy(ml)<b<2z
and hence g(#%,...,a") = (hy(m?), m%)eX,.

4.3. THEOREM. Let B = (B; G, A, V) be an algebra, where (B; A, V)
i8 a complete lattice and each operation ge@ tis isotone. Then the following
conditions are equivalent:

(By) There exists an algebra W = (4; G) and a system B, of r-ideals
of A such that B, satisfies («,) (with G instead of F) and B is isomorphic
with 3(A, B,).

(B2) The algebra B fulfils condition (3) from 2.3 and g(x,...,r) <=
for any xeB and any geQ.

This follows from 2.3, 4.1 and 4.2.

Remark. An algebra A = (4; F) with a system B of r-ideals
satisfying («;) need mnot fulfil [X]r = X,. Let for example card 4 > 2,
ageA, F = {f},f(a) = a, for each aed, X, = A4 for any X c A. If
X = {a,}, then [X]r = X # X, and («,) is valid.

4.4. THEOREM. Let B = (B; G, A, V) be an algebra, where (B; A, V)
18 a complete lattice and each operation ge@ is isotone. Then the following
conditions are equivalent:

(Y1) There exists an algebra W = (A; F) with G < F and a system B,
of r-ideals of A such that B, satisfies condition (x,) and B is isomorphic
with J((A; G), By).

(v2) = (B2)-

Proof. Suppose that (y,;) holds and let ¥ < A. Clearly [Y]g = [Y]r,
hence [Y]¢ = Y,. If g<G, then, by 4.1, g(X, ..., X) ¢ X for any XeBy;
since B and J((¥; &), B,) are isomorphic, we get g(z, ..., ) < x. By 2.3,
B gatisfies (9).

Conversely, suppose that (8,) holds true. We construct the algebra
(A; @) with a system B, of r-ideals as in 4.3. If »n is any integer and
D1y ooy Tn€d, Ye{@y, ..., Tn}r, we define the operation fr . ,(t1,...,1%)
= h(tyy ..., 1) as follows:

y, ti=2c=1,...,n),
h(tu"';tn) = .
iy in other cases.

Let G, be the set of all operations that we get in this way, and let
F = @ v G,. Consider the algebra A = (4; F). Let YeB, and Y # 0.
By 4.3, [Y]g =« Y, = Y, hence Y is closed with regard to any operation
geG. It feGy, k(f) =n,¥y;,...,YneY, then either f(y,,...,¥,) =y, or
TW1y ooy Yn) =Ye{Y1, ...y Yn}r =« Y. Hence [Y]r  ¥,.
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If X c Aand X # @, then [X]y < [X,]r = X,. For any y e X, there
exists a finite subset {z,,...,x,} = X such that ye{z,,...,2,},. From
Jopotgu(@1y ooy @) = ¥y it follows that ye[X]p, and hence X, c [X]p.
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