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ON CERTAIN COMBINATORIAL IDENTITIES
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The purpose of the present note is to give a probabilistic proof of the
combinatorial identities
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valid for 0 <s<m and 2 =1, ..., m—s.

Although (1) is a special case of (2), it will be more convenient to
give first the proof of (1), and then modify it so as to get identity (2).
Let us rewrite (1) in an apparently less natural form
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We shall show that both sides of (3) represent probability of the
same event.

The problem which will serve as a probabilistic set-up is known
in the literature under various names and will be presented here in a pic-
turesque terminology, as the so-called secretary problem (see [1] and [3]).

In response to an announcement for the vacant secretary position,
there appear n candidates. They are interviewed consecutively (in random
order) and each candidate may be ranked with respect to those already
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interviewed, but not with respect to the others. After each interview,
the candidate may be accepted or rejected ; no change of decision is allowed.
The problem is to devise a policy which would maximize the probability
of getting the best candidate.

To put it formally, let 1,..., n» represent the absolute ranks of the
candidates, 1 standing for the best candidate, and » for the worst, and
let 2,,...,x, be a permutation of ranks 1, ..., n. Put

y; = number of terms among x,, ..., x; which are <x; (j =1,...,n).

Thus, y; is the relative rank of the j-th candidate with respect to
candidates which appeared at places 1,...,j (In a given permutation).
The problem is then to devise a policy (i. e., a rule which for each y,, ..., ¥;
tells us whether to employ the j-th candidate or not) which maximizes
the probability of getting the best candidate.

One can show (see, for instance, [1], [2], [3]) that the optimal policy
is contained in the class of policies defined as follows: interview r —1
candidates without employing any of them, and then employ the first
candidate superior to all the preceding ones (if such a candidate appears).
Formally, the rule is: stop at the first k > r with y,, = 1. Call such a policy
n,, and let p, be the probability of employing the best candidate (i. e.,
the one with rank 1) under policy =,.. The problem is thus reduced
to finding an » which maximizes the value p,.

Clearly, for r = 1 the policy =, leads to employing the first candidate,
and p, = 1/n. Assume, therefore, that 2 < r < n.

Now, in order that the policy =, be successful, the value 1 must
appear in the permutation z,, ..., z, at a place k with »r < k < n, and if
1 appears at a place k (probability 1/n), then the minimum among
Zyy ++.y Ty, Must occur at one of the places 1,...,7—1 (probability
(r—1)/(k—1)). Summing over ¥ we obtain p, equal to the right-hand
side of (3).

Now, we can also argue as follows. Let

T=min(a71,...,x_1).
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Given that T = t, the policy =, is successful if £ > 2 and in the remain-
ing part of the permutation (at places numbered r,r+1, ..., n) the term
1 precedes the terms 2,...,t{—1, the probability of this event being
1/(t—1). Summing over t we obtain p, equal to the left-hand side of (3),
which completes the proof of (1).

Then

(4) P(T =1t) = t=1,...,n—7r+2.
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Incidentally, using the right-hand side of (3), one can easily show
that the value r(n) which maximizes p, for a given n satisfies the relation

r(n)/n — ¢!, and also that limp,,, =e™' (see [1]-[3]). Consequently,
we have oo
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We can obtain the proof of (2) if we apply the same two techniques
of conditioning in computing the probability that the policy =, (r > 2)
leads to selection of the candidate with rank 2. Call this probability p,(z),
where z = 1, 2, ...; then p,(1) = p, (see (3)).

Clearly, the highest possible value of z for which p,(2) is positive
equals » —r+1 (if the first » —1 candidates, who are not stopped, have
the highest ranks n,n—1, ..., n—(r— 2), and the next candidate — who
is then automatically stopped — has the rank n —r --1). The sum p,(1) -+
+p,(2) + ... +p,(n—7r-+1) equals the probability that some candidate
will be selected, hence equals (n —r—+1)/n, for no candidate is selected
if and only if 1 appears among the first »r —1 candidates.

Now, let 2 be one of the integers 1,...,n—r+1. In order that the
process stop at selecting the candidate with rank 2, the following
conditions must be satisfied:

(2) The term 2z must appear in the permutation «,,...,x, at some
place k¥ with k=r,r+1, ..., and must precede the terms equal to 1, 2, ...

“v..y 2—1. This gives the bound k¥ < n—z+1, and the probability of such
an event with 2 appearing at place k equals

1l (n—k /[n—1
nl\z—1 z—1/|
(b) Given that the term z appears at place k and precedes the terms
1,...,2—1, the term z is chosen if and only if at places 1,..., k—1 the

minimum occurs among terms numbered 1,...,7r—1. The probability
of this event is equal, as before, to (r—1)/(k—1). Summing over k, we

obtain
n—=k
., n—2+1
r—1 (z—l)

(5) p.(2) = (%_‘1—) Z w1
n k=r
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Now, let g¢,(2) =p,(1) ... +p,(2) be the probability that the
selected candidate will have the rank < z.
Let P(z]|t) be the probability of choosing the candidate with rank < z

given T =1, i.e., given that the minimum among the terms numbered
1,...,r—1 1is .
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Clearly, P(zj1l) = 0, for if T = 1 no candidate is chosen at all. For
t> 1 we have P(z|t) = 1 if 2 > t, since the chosen candidate has always
rank strictly less than ¢. For z <t we have P(z|t) = z/(t—1), because in
order to choose a candidate with rank < z it is necessary and sufficient
that among the terms equal 1,...,t—1 (all of them appearing at places
numbered »,r+1,...,n) one of the terms < z must appear as the first.

Thus, using (4), we obtain

n—r+2 n—r+2
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for z =1,2,...,n—r+1, with the convention that if z = 1, the first
sum is taken as 0.
Since p,(2) = ¢,(2) —¢q,(2—1), we obtain from this formula, after
some transformations,

n—r+2 (n—t)
1 r—2
(6) P-(?) =(~n—)—l=§z+1 1
r—1

Comparing (5) and (6), we obtain after-some reductions identity (2).
Now, the difference p,(2)—p,(2+1) for z =1,...,n—r is equal,
by formula (6), to
n—z2z—1
ey

(7) R
z(’r-—-l)

and it follows that the probabilities p,(z) satisfy the inequalities p,(1)
> p,(2) > ..., that is, the most probable choice is that of the candidate
with the highest rank (provided any choice is made at all).

Expression (7) must be equal to the difference of terms given by (5),
which after some transformations yields as a corollary
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(z=1,...,n—7).
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