Uniqueness of solutions of a mixed problem for parabolic differential-functional equations

by J. Szarski (Kraków)

Abstract. We consider a system of second order differential-functional equations of the type

(1)
$$u_t^i(t,x) = f^i(t,x,u(t,x),u_x^i(t,x),u_{xx}^i(t,x),u(t,\cdot))$$
 $(i=1,\ldots,m),$

where $x=(x_1,\ldots,x_n)$, $u=(u^1,\ldots,u^m)$, $u^i_x=(u^i_{x_1},\ldots,u^i_{x_n})$ and u^i_{xx} is the matrix of second order derivatives with respect to x. For a fixed $t\in(0,T)$ we denote by $u(t,\cdot)=(u^1(t,\cdot),\ldots,u^m(t,\cdot))$ an element of the space of continuous functions from the closure of an open and bounded set $G\subset R^n$ in R^m . For the regular and parabolic solution of (1) in the cylinder $(0,T)\times G$, satisfying adequate initial and boundary conditions following questions are dealt with: estimate of solution, uniqueness of solution and its continuous dependence on the initial and boundary values and on the right-hand sides of (1). Theorems to be proved are known (1) if the right-hand sides of (1) do not depend functionally on $u(t,\cdot)$.

1. Definitions. In the time-space (t, x_1, \ldots, x_n) put

$$D = (0, T) \times G$$
 and $\Sigma = (0, T) \times \partial G$,

where $G \subset \mathbb{R}^n$ is open and bounded and $T \leqslant +\infty$. For a function a(t, x) defined on Σ we denote by Σ_a the subset of Σ in which $a(t, x) \neq 0$.

Let the functions $a^{i}(t, x)$ (i = 1, ..., m) be defined on Σ and suppose that

(1.1)
$$a^{i}(t, x) \geqslant 0 \quad (i = 1, ..., m).$$

ASSUMPTIONS H. For every $(t, x) \in \Sigma_{a^i}$ be given a direction $l^i(t, x)$, so that l^i is orthogonal to the t-axis and some segment, with one extremity at (t, x), of the straight half-line from (t, x) in the direction l^i is contained in \overline{D} .

Let $C_m(\bar{G})$ stand for the space of continuous functions $z(x) = (z^1(x), \ldots, z^m(x))$ from \bar{G} in R^m with the norm

$$||z|| = \max \max \{|z^i(x)| : x \in \overline{G}\}.$$

Let $f^i(t, w, u, q, r, z)$ (i = 1, ..., m), where $q = (q_1, ..., q_n)$, and $r = (r_{jk})$ is a $m \times m$ real symmetric matrix, be defined for $(t, x) \in D$, u, q, r arbitrary and $z \in C_m(\overline{G})$.

⁽¹⁾ J. Szarski, Differential inequalities, Warszawa 1967.

A solution u(t, x) of (1) is called regular solution in D if: u is continuous in \overline{D} , u_t^i , u_x^i , u_{xx}^i are continuous in D and u satisfies (1) for every $(t, x) \in D$. If in addition, for every i the derivative du^i/dl^i exists at each point $(t, x) \in \Sigma_{a^i}$, then a regular solution is said to be Σ_a -regular in D.

A regular solution u(t, x) of (1) is called *parabolic* in D if for any two $m \times m$ real symmetric matrices $r = (r_{jk})$, $\tilde{r} = (\tilde{r}_{jk})$ such that $r \leqslant \tilde{r}$ (i.e. such that the quadratic form $\sum_{j,k} (r_{jk} - \tilde{r}_{jk}) \lambda_j \lambda_k$ is non-positive) the inequality

$$f^{i}(t, x, u(t, x), u_{x}^{i}(t, x), r, u(t, \cdot)) \leqslant f^{i}(t, x, u(t, x), u_{x}^{i}(t, x), \tilde{r}, u(t, \cdot))$$

is satisfied for $(t, x) \in D$.

Assumptions H_1 . The function $\sigma(t, y)$ will be said to satisfy Assumptions H_1 if it is non-negative and continuous in the domain $t \ge 0$, $y \ge 0$.

For $\eta \ge 0$ we denote by $\omega(t, \eta)$ the right-hand maximum solution (see (1), § 5) through $(0, \eta)$ of the ordinary equation

$$dy/dt = \sigma(t, y).$$

Assumptions H_2 . The function $\sigma(t, y)$ is said to satisfy Assumptions H_2 if in the domain t > 0, $y \ge 0$ it is non-negative and continuous, $\sigma(t, 0) = 0$ and y(t) = 0 is the unique solution of (1.2) satisfying the condition

$$\lim_{t\to 0}y(t)=0.$$

Note that here $\sigma(t, y)$ is not supposed to be continuous for t = 0.

2. Estimate of solution.

Theorem 2.1. Assume the right-hand members $f^i(t, x, u, q, r, z)$ of the system

(2.1)
$$u_t^i = f^i(t, x, u, u_x^i, u_{xx}^i, u(t, \cdot)) \quad (i = 1, ..., m)$$

to be defined for $(t, x) \in D$, for arbitrary u, q, r and for $z \in C_m(\overline{G})$. Suppose that

(2.2)
$$f^{i}(t, x, u, 0, 0, z) \operatorname{sgn} u^{i} \leq \sigma(t, \max_{j} \{|u^{j}|, ||z||\}),$$

where the function σ satisfies Assumptions H_1 . For $\eta \geqslant 0$ let the right-hand maximum solution $\omega(t, \eta)$ of equation (1.2) trough $(0, \eta)$ be defined in an interval $(0, \gamma)$.

Let the functions $a^i(t,x)$ satisfying inequalities (1.1) and the directions $l^i(t,x)$ satisfying Assumptions H be given on Σ . Let $\beta^i(t,x)$ be defined on Σ_{a^i} and assume that inequalities

$$\beta^{i}(t,x) > B^{i} \geqslant 0 \quad on \ \Sigma_{a^{i}}$$

hold true.

Suppose finally that $u(t, x) = (u^1(t, x), ..., u^m(t, x))$ is a Σ_a -regular, parabolic solution of (2.1) in D, satisfying initial inequalities

$$(2.4) |u^{i}(0,x)| \leq \eta for x \in \overline{G}$$

and boundary inequalities

(2.5)
$$|\beta^{i}(t, w) u^{i}(t, x) - a^{i}(t, w) du^{i}/dl^{i}| \leq B^{i} \omega(t, \eta) \quad \text{for } (t, x) \in \Sigma_{a^{i}},$$

$$|u_{i}(t, x)| \leq \omega(t, \eta) \quad \text{for } (t, x) \in \Sigma \setminus \Sigma_{a^{i}}.$$

Under these assumptions inequalities

(2.6)
$$|u^{i}(t,x)| \leq \omega(t,\eta) \quad (i=1,\ldots,m)$$

hold true in D for

$$(2.7) 0 \leq t < \delta = \min(\gamma, T).$$

Proof. Put

$$\begin{split} M^{i}(t) &= \max\{u^{i}(t, x) \colon x \in \overline{G}\}, \quad N^{i}(t) = \max\{-u^{i}(t, x) \colon x \in \overline{G}\}, \\ W(t) &= \max_{i} \max\{|u^{i}(t, x)| \colon x \in \overline{G}\} = \|u(t, \cdot)\|. \end{split}$$

The function W(t) is continuous in (2.7) (see (1), § 34) and by (2.4) we have

$$W(0) \leqslant \eta$$
.

Inequalities (2.6), which are to be proved, are obviously equivalent with

$$W(t) \leqslant \omega(t, \eta)$$
 for $0 \leqslant t < \delta$.

Now, the last inequality will be proved if we show (see (1), § 14) that the differential inequality

$$(2.8) D_{-}W(t) \leqslant \sigma(t, W(t))$$

holds true in the set

$$(2.9) E = \{t \in (0, \gamma) \colon W(t) > \omega(t, \eta)\}.$$

To prove (2.8) in (2.9) fix a $\tilde{t} \in E$; then, we have

$$(2.10) W(\tilde{t}) > \omega(\tilde{t}, \eta).$$

There is an index j and a point $\tilde{x} \in \overline{G}$ (see (1), § 34), so that either

$$(2.11) W(\tilde{t}) = M^{j}(\tilde{t}) = u^{j}(\tilde{t}, \tilde{x}), D_{-}W(\tilde{t}) \leqslant D^{-}M^{j}(\tilde{t}),$$

or

$$(2.12) W(\tilde{t}) = N^{j}(\tilde{t}) = -u^{j}(\tilde{t}, \tilde{x}), D_{-}W(\tilde{t}) \leqslant D^{-}N^{j}(\tilde{t}).$$

60 J. Szarski

Suppose we have, for instance, (2.12). Then, in view of (1.1), (2.3), (2.5) and (2.10) we conclude (see (1), § 47) that (\tilde{t}, \tilde{x}) is an interior point of D. Since the function $-u(\tilde{t}, \tilde{x})$ attains its maximum at the interior point \tilde{x} and is of class C^2 in its neighbourhood, we have

$$(2.13) u_x^j(\tilde{t}, \tilde{x}) = 0,$$

$$-u_{xx}^{j}(\tilde{t},\tilde{x}) \leqslant 0.$$

In view of (see (1), § 33)

$$D^-N^j(\tilde{t}) \leqslant -u_t^j(\tilde{t},\tilde{x}),$$

we get by (2.12)

$$(2.15) D_{-}W(\tilde{t}) \leqslant -u_{t}^{j}(\tilde{t},\tilde{x}) = -f^{j}(\tilde{t},\tilde{x},u(\tilde{t},\tilde{x}),u_{x}^{j}(\tilde{t},\tilde{x}),u_{xx}^{j}(\tilde{t},\tilde{x}),u(\tilde{t},\cdot)).$$

Since by (2.12) we have

$$\operatorname{sgn} u^j(\tilde{t},\tilde{x}) = -1,$$

it follows from (2.15) by (2.13)

$$(2.16) D_{-}W(\tilde{t}) \leqslant \left[f^{j}(\tilde{t}, \tilde{x}, u(\tilde{t}, \tilde{x}), 0, 0, u(\tilde{t}, \cdot)) - f^{j}(\tilde{t}, \tilde{x}, \tilde{u}(\tilde{t}, \tilde{x}), 0, u(\tilde{t}, \cdot))\right] + f^{j}(\tilde{t}, \tilde{x}, u(\tilde{t}, \tilde{x}), 0, 0, u(\tilde{t}, \cdot)) \operatorname{sgn} u^{j}(\tilde{t}, \tilde{x}).$$

The difference in brackets is, by the parabolicity of solution u(t, x) and by (2.14), non-positive. Hence, from (2.16) and (2.2) we obtain

$$(2.17) D_{-}W(\tilde{t}) \leqslant \sigma(\tilde{t}, \max_{k} \{|u^{k}(\tilde{t}, \tilde{x})|, ||u(\tilde{t}, \cdot)||\}).$$

But, by the definition of W(t) and by (2.12) we have

$$\max_{k} \{|u^k(\tilde{t}, \tilde{w})|, \|u(\tilde{t}, \cdot)\|\} = W(\tilde{t}),$$

whence inequality (2.17) implies

$$D_{-}W(\tilde{t}) \leqslant (\tilde{t}, W(\tilde{t})),$$

what was to be proved.

3. Comparison theorem.

THEOREM 3.1. Suppose the right-hand members $f^{i}(t, x, u, q, r, z)$ of system (2.1) and $g^{i}(t, x, u, q, r, z)$ of system

$$(3.1) u_t^i = g^i(t, x, u, u_x^i, u_{xx}^i, u(t, \cdot)) (i = 1, ..., m)$$

are defined for $(t, x) \in D$, for arbitrary u, q, r and $z \in C_m(\overline{G})$. Assume that

$$[f^{i}(t, w, u, q, r, z) - g^{i}(t, w, \tilde{u}, q, r, \tilde{z})]\operatorname{sgn}(u^{i} - \tilde{u}^{i})$$

$$\leqslant \sigma(\tilde{t}, \max_{k} \{|u^k - \tilde{u}^k|, \|z - \tilde{z}\|\}),$$

where the function σ satisfies Assumptions H_1 . For $\eta \geq 0$ let the right-hand maximum solution $\omega(t, \eta)$ of equation (1.2) through $(0, \eta)$ be defined in an interval $(0, \gamma)$.

Let functions $a^{i}(t, x)$ satisfying (1.1), the directions $l^{i}(t, x)$ satisfying Assumptions H and $\beta^{i}(t, x)$ satisfying (2.3) be given on Σ .

Suppose that $u(t, x) = (u^1(t, x), \ldots, u^m(t, x))$ is a Σ_a -regular, parabolic solution of (2.1) in D and $v(t, x) = (v^1(t, x), \ldots, v^m(t, x))$ is a Σ_a -regular solution of (3.1) in D.

Assume finally initial inequalities

$$|u^{i}(0,x)-v^{i}(0,x)| \leq \eta \quad \text{for } x \in \overline{G}$$

and boundary inequalities

$$|\beta^{i}(t,x)[u^{i}(t,x)-v^{i}(t,x)]-a^{i}(t,x)d(u^{i}-v^{i})/dl^{i}| \leq B^{i}\omega(t,\eta)$$

$$for (t,x) \in \Sigma_{a^{i}},$$

$$|u^{i}(t,x)-v^{i}(t,x)| \leq \omega(t,\eta) \quad for (t,x) \in \Sigma \setminus \Sigma_{a^{i}}$$

to hold true.

Under these assumptions we have

$$|u^{i}(t, x) - v^{i}(t, x)| \leq \omega(t, \eta) \quad (i = 1, ..., m)$$

in D for t in the interval (2.7).

Proof. We put

(3.6)
$$M^{i}(t) = \max\{u^{i}(t, x) - v^{i}(t, x) \colon x \in \overline{G}\},$$

$$N^{i}(t) = \max\{v^{i}(t, x) - u^{i}(t, x) \colon x \in \overline{G}\},$$

$$W(t) = \|u(t, \cdot) - v(t, \cdot)\|.$$

The function W(t) is continuous in (2.7) (see (1), § 34) and by (3.3) we have $W(0) \leq \eta$.

Inequalities (3.5) to be proved are equivalent with

$$W(t) \leqslant \omega(t, \eta)$$
 for $0 \leqslant t < \delta$.

Now, to prove the last inequality it is sufficient (see (1), § 14) to show that the differential inequality (2.8) holds true in the set (2.9). To prove (2.8) in (2.9) for W(t) defined by (3.6), fix a $\tilde{t} \in E$; then, we have (2.10) and there is an index j and a point $\tilde{x} \in \tilde{G}$ (see (1), § 34) such that either

$$(3.7) W(\tilde{t}) = M^{j}(\tilde{t}) = u^{j}(\tilde{t}, \tilde{x}) - v^{j}(\tilde{t}, \tilde{x}), D_{-}W(\tilde{t}) \leqslant D^{-}M^{j}(\tilde{t}),$$
 or

$$(3.8) W(\tilde{t}) = N^{j}(\tilde{t}) = v^{j}(\tilde{t}, \tilde{x}) - u^{j}(\tilde{t}, \tilde{x}), D_{-}W(\tilde{t}) \leqslant D^{-}N^{j}(\tilde{t}).$$

Suppose we have, for instance, (3.7). Then, in view of (1.1), (2.3), (3.4) and (2.10) we conclude (see (1), § 47) that (\tilde{t}, \tilde{x}) is an interior point of D.

62 J. Szarski

Since the function $u^{j}(t,x)-v^{j}(t,x)$ attains its maximum at the interior point \tilde{x} and is of class C^{2} in its neighbourhood, we have

$$(3.9) u_x^j(\tilde{t},\tilde{x}) = v_x^j(\tilde{t},\tilde{x}),$$

$$(3.10) u_{xx}^{j}(\tilde{t}, \tilde{x}) \leqslant v_{xx}^{j}(\tilde{t}, \tilde{x}).$$

In view of (see (1), § 33)

$$D^-M^j(\tilde{t}) \leqslant u_i^j(t,\tilde{x}) - v_i^j(\tilde{t},\tilde{x})$$

we get by (3.7)

$$\begin{split} D_{-}W(\tilde{t}) \leqslant u_{t}^{j}(\tilde{t},\tilde{x}) - v_{t}^{j}(\tilde{t},\tilde{x}) \\ &= f^{j}\big(\tilde{t},\tilde{x},u(\tilde{t},\tilde{x}),u_{x}^{j}(\tilde{t},\tilde{x}),u_{xx}^{j}(\tilde{t},\tilde{x}),u(\tilde{t},\cdot)\big) - \\ &- g^{j}\big(\tilde{t},\tilde{x},v(\tilde{t},\tilde{x}),v_{x}^{j}(\tilde{t},\tilde{x}),v_{xx}^{j}(\tilde{t},\tilde{x}),v(\tilde{t},\cdot)\big). \end{split}$$

From the last inequality it follows by (3.9) that

$$\begin{split} D_{-}W(t) &\tilde{\leqslant} \left[f^{j} \left(t, \tilde{\tilde{x}}, u\left(t, \tilde{\tilde{x}} \right), u_{x}^{j}(t, \tilde{\tilde{x}}), u_{xx}^{j}(t, \tilde{\tilde{x}}), u\left(t, \tilde{\cdot} \right) \right) - \\ &- f^{i} \left[t, \tilde{x}, u\left(\tilde{t}, \tilde{x} \right), u_{x}^{j}(\tilde{t}, \tilde{x}), v_{xx}^{j}(\tilde{t}, \tilde{x}), u\left(\tilde{t}, \cdot \right) \right) \right] + \\ &+ \left[f^{j} \left(t, \tilde{x}, u\left(\tilde{t}, \tilde{x} \right), u_{x}^{j}(\tilde{t}, \tilde{x}), v_{xx}^{j}(\tilde{t}, \tilde{x}), u\left(\tilde{t}, \cdot \right) \right) - \\ &- g^{j} \left[t, \tilde{x}, v\left(\tilde{t}, \tilde{x} \right), u_{x}^{j}(\tilde{t}, \tilde{x}), v_{xx}^{j}(\tilde{t}, \tilde{x}), v\left(\tilde{t}, \cdot \right) \right) \right]. \end{split}$$

The first difference in brackets is, by the parabolicity of solution u(t, x) and by (3.10), non-positive. By (3.7) we have

$$\operatorname{sgn}\left[u^{j}(\tilde{t},\,\tilde{w})-v^{j}(\tilde{t},\,\tilde{x})\right]\,=\,1\,.$$

Hence, we get in virtue of (3.2)

$$D_{-}W(\tilde{t})\leqslant\sigma\big(\tilde{t},\max_{k}\{|u^{k}(\tilde{t},\tilde{x})-v^{k}(\tilde{t},\tilde{x})|,\,\|u(\tilde{t},\,\cdot)-v(\tilde{t},\,\cdot)\|\}\big).$$

But, by the definition of W(t) and by (3.7), we obtain

$$\max_{k} \left\{ \left| u^k(\tilde{t}, \tilde{w}) - v^k(\tilde{t}, \tilde{x}) \right|, \left\| u(\tilde{t}, \cdot) - v(\tilde{t}, \cdot) \right\| \right\} = W(\tilde{t}),$$

whence the last inequality implies (2.8) for $t = \tilde{t}$, what was to be proved.

4. Uniqueness criteria.

THEOREM 4.1. Let the right-hand sides $f^i(t, x, u, q, r, z)$ of system (2.1) be defined for $(t, x) \in D$, for arbitrary u, q, r and for $z \in C_m(\overline{G})$. Assume that

$$(4.1) \qquad [f^{i}(t, x, u, q, r, z) - f^{i}(t, x, \tilde{u}, q, r, \tilde{z})] \operatorname{sgn}(u^{i} - \tilde{u}^{i}) \\ \leqslant \sigma(t, \max_{k} \{|u^{k} - \tilde{u}^{k}|, \|z - \tilde{z}\|),$$

where the function $\sigma(t, y)$ satisfies Assumptions H_1 .

Let the functions $\alpha^i(t, x)$ satisfying (1.1), the directions $l^i(t, x)$ satisfying Assumptions H, $\beta^i(t, x)$ satisfying (2.3) and the functions $\psi^i(t, x)$ be given on Σ . Assume the functions $\phi^i(x)$ to be defined on \overline{G} , and introduce the following initial and boundary conditions:

(4.2)
$$u^{i}(0, x) = \varphi^{i}(x) \quad \text{for } x \in \overline{G},$$

(4.3)
$$\beta^{i}(t,x)u^{i}(t,x) - \alpha^{i}(t,x)du^{i}/dl^{i} = \psi^{i}(t,x) \quad \text{for } (t,x) \in \Sigma_{\alpha^{i}},$$

$$u^{i}(t,x) = \psi^{i}(t,x) \quad \text{for } (t,x) \in \Sigma \setminus \Sigma_{\alpha^{i}}.$$

Let, moreover, $\sigma(t, 0) = 0$ and y(t) = 0 be the unique solution of (1.2) through the point (0, 0), i.e.

$$\omega(t,0)=0.$$

Then, the mixed problem (4.1), (4.2), (4.3) admits at most one parabolic Σ_a -regular solution in D. If such a solution exists, then it is unique in the class of Σ_a -regular solutions.

Proof. Suppose u(t,x) is a parabolic and Σ_a -regular solution of (4.1), (4.2), (4.3) and v(t,x) is a Σ_a -regular solution in D. Then, they satisfy all the assumptions of Theorem 3.1 with $g^i = f^i$, $\eta = 0$ and $\gamma = +\infty$. Therefore, we obtain in D

$$|u^{i}(t,x)-v^{i}(t,x)|\leqslant \omega(t,0),$$

whence, by (4.4), it follows that

$$u^i(t,x) = v^i(t,x)$$
 for $(t,x) \in D$.

Now, we will prove a slightly more general uniqueness criterion.

THEOREM 4.2. Let the right-hand sides of system (2.1) satisfy inequalities (4.1) with the function $\sigma(t, y)$ satisfying Assumptions H_2 . This being assumed the mixed problem (4.1), (4.2), (4.3) admits at most one parabolic, Σ_a -regular solution; this solution, if it exists, is unique in the class of Σ_a -regular solutions.

Proof. For u(t, x) and v(t, x) being two solutions of (4.1), (4.2), (4.3) parabolic and Σ_a -regular respectively Σ_a -regular in D, introduce the notations at the beginning of the proof of Theorem 3.1. The assertion of Theorem 4.2 is then equivalent with

$$(4.5) W(t) = 0 for 0 \leqslant t < T.$$

Now, quite similarly as in the proof of Theorem 3.1, we show that W(t) is continuous in (0, T),

$$(4.6) W(0) = 0$$

and the differential inequality (2.8) is satisfied in the set

$$\{t \in (0, T): W(t) > 0\}.$$

From the above facts it follows that (see (1), § 14) (4.5) holds true.

64 J. Szarski

Remark. Theorem 4.2 does not follow from Theorem 4.1 since here the function $\sigma(t, y)$ is not supposed to be continuous for t = 0.

5. Continuous dependence of the solution.

THEOREM 5.1. Suppose all the assumptions of Theorem 4.1 to hold true and

(5.1)
$$\beta^{i}(t,x) > B^{i} > 0$$
.

Let u(t, x) be the parabolic, Σ_a -regular solution of (4.1), (4.2), (4.3) in D. Denote by $v(t, x, \varepsilon)$ a Σ_a -regular solution in D of the system

(5.2)
$$v_t^i = f_s^i(t, x, v, v_x^i, v_{xx}^i v(t, \cdot)) \quad (i = 1, ..., m),$$

satisfying initial conditions

(5.3)
$$v^{i}(0, x) = \varphi^{i}(x, \varepsilon) \quad \text{for } x \in \overline{G}$$

and boundary conditions

$$(5.4) \begin{array}{c} \beta^{i}(t,x)v^{i}(t,x)-a^{i}(t,x)\,dv^{i}/dl^{i} \ = \psi^{i}(t,x,\,\varepsilon) \quad \ \, for \ (t,x)\,\epsilon \, \, \Sigma_{a^{i}}, \\ v^{i}(t,x) \ = \ \psi^{i}(t,x,\,\varepsilon) \quad \ \, for \ (t,x)\,\epsilon \, \, \Sigma \smallsetminus \Sigma_{a^{i}}. \end{array}$$

Suppose that

(5.5)
$$|f^{i}(t, x, u, q, r, z) - f^{i}_{s}(t, x, u, q, r, z)| \leq \varepsilon,$$

$$|\varphi^i(x,\,\varepsilon)-\varphi^i(x)|\leqslant \varepsilon,$$

$$|\psi^{i}(t, x, \varepsilon) - \psi^{j}(t, x)| \leqslant \varepsilon.$$

Under these assumptions

(5.8)
$$\lim_{\varepsilon \to 0} v(t, x, \varepsilon) = u(t, x) \quad \text{uniformly in } D.$$

Proof. By (4.1) and (5.5) we have

$$(5.9) \qquad \begin{aligned} [f^i(t, x, u, q, r, z) - f^i_s(t, x, \tilde{u}, q, r, \tilde{z})] \operatorname{sgn}(u^i - \tilde{u}^i), \\ \sigma(t, \max_k \{|u^k - \tilde{u}^k|, \|z - \tilde{z}\|) + \varepsilon. \end{aligned}$$

Denote by $\omega_{\epsilon}(t, \eta)$ the right-hand maximum solution through $(0, \eta)$ of the ordinary differential equation

$$dy/dt = \sigma(t, y) + \varepsilon$$
.

It is known (see (1), § 10) that for $\varepsilon > 0$ and $\eta \ge 0$ sufficiently small $\omega_{\varepsilon}(t, \eta)$ exists in the interval (0, T) and

$$\lim_{s\to 0,\,\eta\to 0}\omega_s(t,\,\eta)\,=\,\omega\,(t,\,0)\,,$$

whence, by assumption (4.4) we obtain

(5.10)
$$\lim_{\epsilon \to 0, \eta \to 0} \omega_{\epsilon}(t, \eta) = 0 \quad \text{uniformly for } 0 \leqslant t < T.$$

Since $\omega_{\varepsilon}(t,\eta)$ is increasing with regard to t and $\omega_{\varepsilon}(0,\eta) = \eta$, we easily check that putting

$$B = \min_{k} B^{k} > 0, \quad \eta = \max(\varepsilon, \varepsilon/B),$$

we get

$$\varepsilon \leqslant B^i \omega_{\varepsilon}(t, \eta),$$

whence in view of (5.6) and (5.7)

$$|\varphi^{i}(x,\,\varepsilon)-\varphi^{i}(x)|\leqslant\eta,$$

$$(5.12) |\psi^{i}(t, x, \varepsilon) - \psi^{i}(t, x)| \leq \min \{\omega_{\varepsilon}(t, \eta), B^{i}\omega_{\varepsilon}(t, \eta)\}.$$

In virtue of (5.9), (4.2), (4.3), (5.3), (5.4), (5.11) and (5.12) we check that all assumptions of Theorem 3.1 hold true with $g^i = f^i$, $v^i = v^i(t, x, \varepsilon)$, $\eta = \max(\varepsilon, \varepsilon/B)$, $\gamma = T$, with σ replaced by $\sigma + \varepsilon$ and $\omega(t, \eta)$ replaced by $\omega_s(t, \eta)$. Therefore, we have in D

$$|u^i(t,x)-v^i(t,x,\varepsilon)| \leqslant \omega_{\varepsilon}(t,\eta) \quad (i=1,\ldots,m).$$

But, $\eta = \max(\varepsilon, \varepsilon/B) \to 0$ as $\varepsilon \to 0$. Hence, the last inequality together with (5.10) implies (5.8).

- 6. Final remarks. All theorems of this paper are valid for more general domains than the cylinder D. Indeed, the cylinder may be replaced by a region Ω having following properties (see (1), § 33):
- (a) Ω is open, contained in the zone 0 < t < T, and the intersection of Ω with any closed zone $0 \le t \le t_1 < T$ is bounded,
- (b) the projection S_t on the space (x_1, \ldots, x_n) of the intersection of $\overline{\Omega}$ with the plane $t = t_1$ is, for any $t_1 \in (0, T)$, non-empty,
- (c) the point (t, x) being arbitrarily fixed in $\overline{\Omega}$, to every sequence t, such that $t, \epsilon < 0, T$) and $t, \to t$, there is a sequence x^r so that $x^r \in S_{t_r}$ and $x^r \to x$.

If we denote now by Σ that part of $\partial \Omega$ which is contained in the open zone 0 < t < T and if we assume that the right-hand sides $f^i(t, x, u, q, r, z)$ of (2.1) are defined for $(t, x) \in \Omega$ for u, q, r arbitrary and $z \in C_m(S_t)$, then all the proofs of theorems remain unchanged.

MATHEMATICAL INSTITUTE OF THE JAGELLONIAN UNIVERSITY

Reçu par la Rédaction le 8. 1. 1972