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Uniqueness of solutions of a mixed problem
for parabolic differential-functional equations

by J. Szarsgx (Krakéw)

Abstract. We consider a system of second order differential-functional equations.
of the type

(1) ub(t, ©) = f1Q2, @, u(t, o), ui(t, @), uly(t, @), u(t, ")) (=1,...,m),

where @ = (@1, ..., @g)y % = (uh, ..., u™), ub = (ul,, ..., ul ) and uly is the matrix
of second order derivatives with reapect to z. For a fixed te {0, T) we denote by
w(t, *) = _(ul (@ *)s +»es u™(t,+)) an element of the space of continuous functions from

the closure of an open and bounded set G = R" in B™. For the regular and parabolic
golution of (1) in the cylinder (0, T)x G, satisfying adequate initial and boundary
conditions following questions are dealt with: estimate of solution, uniqueness of
solution and its continuous dependence on the initial and boundary values and on
the right-hand sides of (1), Theorems to be proved are known (1) if the right-hand
gides of (1) do not depend functionally on u(t, ).

" 1. Definitions. In the time-space (f, %1, ..., z,) put
D=(0,TYx@ and X =(0,T)x0@,
where @ = R" is open and bounded and T < 4 oco. For a function a(?, o)
defined on X we denote by Z, the subset of X in which a(f, @) # 0.

Let the functions o*(¢, ) (¢ =1, ..., m) be defined on X and suppose
that

(1.1) dt,2)=>0 (@F=1,...,m).

AssumpTioNs H. For every (i, x)e X be given a direction I'(t, ), so
that 1 is orthogonal to the t-axis and some segment, with one extremity at
(2, @), of the straight half-line from (%, x) in the direction I 43 contained in D.

Let C,,(G) stand for the space of continuous funections z(w) = (2* (), .-
..., #"(@)) from @ in B™ with the norm

llz] = maxmax{|z*(z)|: xeF}.
[4
Let fi(t; o, u g7 2) (£=1,...,m), where ¢ = (q1, .-, qn), and 7

= () is @ m x m real symmetric matrix, be defined for (¢, ) D, u, g, ¥
arbitrary and ze 0, (@).

(1) J. Bzarski, Differential inequalities, Warszawa 1967.
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A solutlon u(l, @) of (1) is ca,Iled regular solution in D if: u is conti-
nuous in D, uf, ul, ul, are continuous in D and w satisties (1) for every
(¢, ®)e D. If in addition, for every i the derivative du’/dl' exists at each
point (t, z)e Z,i, then a regular solution is said to be X -regular in D.

A regular solution u (¢, #) of (1) is called parabolic in D if for any two
m Xm real symmetric matrices » = (rj), ¥ = () such that » < ¥ (ie.
such that the quadratic form (7, —¥;) A 4; 18 non-positive) the inequality

.k

fi(t’ @, u(t, @), '"':;(ti @), 7y u(t, )) gff(t, @, u(t, v), 'ui(t: ), ¥, u(t, ))

is satisfied for (i, #)e.D.
AssuMPTIONS H,;. The function o(t, ¥) will be said to satisfy Assump-
dions H; if it is non-negative and continuous in the domain t>0, y > 0.
For n>= 0 we denote by w(?, n) the right-hand maximum solution
{see (1), § 5) through (0,7) of the ordinary equation
(1.2) dyldt = a(t,y).

AssumpTioNs H,. The function o(t, y) is said to satisfy Assumptions H,
if in the domain t> 0, y>>0 it is non-negative and continuous, o(t, 0)
=0 and y(t) = 0 is the unique solution of (1.2) satisfying the condition

limy () = 0.
0

Note that here o(f, ) is not supposed to be continuous for ¢t = 0.

2. Estimate of solution.

THEOREM 2.1. Assume the right-hand members f‘(t @, Uy q, 7,.2) Of the
[ystem
12.1) uf =f"(t,ac, Uy Ugy Uggy (T, V) G =1,...,m)

to be defined for (t,@)e D, for arbitrary u, q, v and for ze O, (G). Suppose
that '

(2.2) Fity @, u,0,0,2)5gnu' < o2, m?X{lu’l, ll21}) 5

awhere the function o satzsfws Assumptions H,. For n = 0 let the right-hand

mazimum solution w(t,n) of equation (1.2) trough (0, n) be defined in an
anterval 0, y).

~ Let the functions a‘(t, x) satisfying inequalities (1.1) and the directions
V1, @) satisfying Assumptions H be given on Z. Let (i, x) be defined on
Z, and assume that inequalities
(2.8) B, 2)>B'>20 on Z,
hold true,
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Buppose finally that u(l, ») = (u(t, @), ..., w™ (1, @) is a Z,-regular,
parabolio solution of (2.1) in D, satisfying initial inequalities
(2.4) ['(0,2)| <y for we@
and boundary inequalilies
25) 18%(t, m)u'(t, z) — o’ (¢, o) du?[dV| < B*w(t, n) for (t,%)e X,
' s (t, 2)| < @ (3, 1) for (t,2)e 2\ Z,.

Under these assumptions inequalities

{2.6) Wity 2)| < o(t,g) (G =1,...,m)

hold true in D for

{2.7) 0<t< é =min(y,T).
Proof. Put

Mi(t) = max{u’(t,®): 2e G}, N'(t) =max{—u'(t,2): weG},
W(t) = maxmax{ju’(t, %)|: ze G} = (2, )|

The function W(¢) is continuous in (2.7) (see (), § 34) and by (2.4)
we have

W(0) < 7.
Inequalities (2.6), which are to be proved, are obviously equivalent with
Wil <ow(,g) forogt<d.

Now, the last inequality will be proved if we show (see (1), § 14) that
the differential inequality

(2.8) D_W(t) < oft, W()

holds true in the set

(2.9) B = {te (0,%): W) > o(t, n)}.

To prove (2.8) in (2.9) fix a te E; then, we have

(2.10) W) > o, ).

There is an index j and a point Ze G (see (1), § 34), so that either
(2.11) W) = W (E) =, 6), D_W(?)élD‘il.If(?jj.

or

(2.12) W(E) = M) = —w/(t, ), D_W(E)<D N().



60 J. Szarski

Suppose we have, for instance, (2.12). Then, in view of (1.1), (2.3), (2.5)
and (2.10) we conclude (see (1), § 47) that (¢, @) is an interior point of D.

Since the function —fu,(;), ) attains its maximum at the interior point #
and is of clags C* in its neighbourhood, we have

(2.13) ui(t, &) = 0,
(2.14) —ul (¢, B) < 0.
In view of (see (), § 33)

DN ()< —uf(t, &),
we get by (2.12)
(2.15) -D—W(E) < -—-’Lb{(’z, &) = _fj('zy x, u('t" ), u,{.(‘t', @), u:jra:(;’ 5’)1 u(;r )) .
Since by (2.12) we have
sgnv!(t, 3) = —1,
it follows from (2.15) by (2.13)
(2.16) D_W(&R) <[t & u( 5),0,0,ult, ) ~Ft, 3, u(t, &), 0,
“;m(t: ), u(t, ))] +fj(#, @, u(t, 5’); 0,0, u(t, '))sgnuj(t, ‘E)

The difference in brackets is, by the parabolicity of solution u(t, ) and
by (2.14), non-positive. Hence, from (2.16) and (2.2) we obtain

(2.17) D_WEH<olt, mf;:x{lu"(f y &), [ty )

But, by the definition of W(¢) and by (2.12) we have
mix{lu"(t, )|, flu(t, )} = W),

whence inequality (2.17) implies

D_W@E <[, W),
what was to be proved.

3. Comparison theorem.

THEOREM 3.1. Suppose the right-hand members f*(t, z, u, q, 7, 2) of
system (2.1) and ¢*(t, @, u, q, 7, %) of system

(3.1) uj =9‘(t, B, Uy Ugy Upg, (T, )) (t=1,...,m)
are defined for (i, x)e D, for arbitrary w, q,r and ze C,(&). Assume that
(3.2) [f'(t, @, u, g7, 8)—g'(t, 0,8, g, 7, E)JSQH_('“""“"I{)

< o(?, m?"x““k—'ﬁkl’ ||z-5ll}),



Parabolic differential-functional equations 6L

where the funciion o satzsfws Assumptions H,. For 5 > 0 let the right-hand
maximum solution w(t,n) of equation (1.2) through (0, ) be defined in an
interval <0, y).

Let fumctions o'(t, x) satisfying (1.1), the directions ‘¢, ) satwfymg
Assumptions H and pi(t, z) satisfying (2.3) e given on Z.

Suppose that u(t, ®) = (W (t, v), ..., w™ (¢, 2)) is @ Z,-regular, parabolio
solution of (2.1) in D and v(t, ) = (v1(t, z), ..., v™(t, w)) is a X,-regular
solution of (3.1) im D. B

Assume finally initial inequalities
(3.3) [u*(0, ) — o' (0, 2)| <y for e
and boundary inequalities

B (¢, @) [w' (2, @) —o*(t, @)1 — o' (¢, @) d (' —v*) [d1| < Bo(t, 1)
(3.4) for (4, x)e 24,
|ui(t, 8) — o' (¢, @) < 0(t, ) for (¢, m)e I\ Zy

to hold true.
Under these assumpiions we have

(3.5) [ui(t, 3) — o' (¢, &) < 0(t,n) (G =1,...,m)
in D for t in the interval (2.7).
Proof. We put
MH(t) = max {u'(t, 2) —v'(t, 2): ve G},
(3.6) Ni(t) = max{v'(t, @) —u'(t, ®): e G},
W) = flu(t, ) =0, ).
The function W(t) is continuous in (2.7) (see (1), § 34) and by (3.3)

we have W(0)< 7.
Inequalities (3.5) to De proved are equivalent with

Wi <w(t,n) forogt<d.

Now, to prove the last inequality it is sufficient (sée (%), § 14) to show
that the differential inequality (2.8) holds true in the set (2.9). To prove
(2.8) in (2.9) for W(t) defined by (3.6), fix a ¢¢ E; then, we have (2.10)
and there is an index j and a point Ze¢ G (see (), § 34) such that either
(3.7) W) = M) =, 8)—v (1,8, D_W(E)<D M3,
or ,

(3.8) W@ =N(@) =o', 5~ 5), D_W(E)<DNq).
Suppose we have, for instance, (3.7). Then, in view of (1.1), (2.3), (3.4)
and (2.10) we conclude (see (1), § 47) that (i, #) is an interior point of D.
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Since the function %!(t, #) —v’(¢, ») attains its maximum at the interior
point # and is of class (? in its neighbourhood, we have

(3.9) ""'aj:(t; E’) = "’Z:(E’ 57),
(3.10) U, B) < vy (0, B).
In view of (see (), § 33)

D= () < ul(t, B) —vi(t, &),
we get by (8.7)

D_W () < uj(t, &) —vi(t, &)

=f5(t, @, 'u.(t, ), wl(t, &), ufm,(;:', ), u(f, D)=

—g'ft, &, v, &), 0L, B), vyt 3), (3, ).
From the last inequaﬁty it follows by (3.9) that
D_W@E) < [ft, 2, u(E, 3), w(t, D), ul, (¢, B), u(t, ) —

—f‘(t, &, u(t, d), ul(t, d), vl @& &), u(t, 3]+
+ [, &, wlt, @), wi (8, B), v, 3), u(t, *))—
—g (t &, 0(t,®), ui(t, @), v (¢, &), v(t, - )]

The first difference in brackets is, by the parabolicity of solution « (%, )
and by (3.10), non-positive. By (3.7) we have

sgn [u (¢, @) — v/ (1, &)] = 1.
Hence, we get in virtue of (3.2)
D_W() < oft, mzx{[u"(i, &) — 04 (3, B)|, [, ) —o(, })-

But, by the definition of W(#) and by (3.7), we obtain
max {fu (s, &) ~o* (t, )], lu(t, ) — o, M} = W),

whence the last inequality implies (2.8) for t = -t', what was to be proved.

4. Uniqueness criteria.

THEOREM 4.1. Let the right-hand sides f*(t, @, u, ¢, 7, #) of system (2.1)
be defined for (t, w)e D, for arbitrary u, q, r and for ze C,(@). Assume that

(4¢.1) [fi(ti @, Uy Gy 7y 2)—F(t, @,y By q, 7y 5’)]sgn('¢‘i“ai)
< o(t, max{luk—ﬁkb ”z_"“’;”))
" -

where the funotion o(t,y) satisfies Assumptions H,.
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Let the functions air(t, x) satisfying (1.1), the dirvections 1° (¢, z) satisfying
Assumptions H, f*(t, o) satisfying (2.3) and the functions y'(t, x) be given.
on X. Assume the functions ¢*(x) to be defined on @, and iniroduce the fol-
lowing initial and boundary conditions:

(4.2) (0, ®) = ¢'(z) for we@,
ﬁi(t’ w)u(t, @) — ai(t’ m)d“i/dl‘ = y'(t, @) Jor (t, @)e 2,
wi(t, @) = vit, @) for (1, m)e I\ I
Let, moreover, o(l, 0) = 0 and y(t) = 0 be the unique solution of (1.2)
through the point (0, 0), i.e.
(4.4) w(t,0) = 0.
Then, the mized problem (4.1), (4.2), (4.3) admiis at most one parabolic

Z -regular solution in D. If such a solution exists, them it is unigue in the
class of X -regular solutions.

Proof. Suppose u(?, #) is a parabolic and X -regular solution of
(4.1), (4.2), (4.3) and v(?, ) is a X -regular solution in D. Then, they sa-
tisfy all the assumptions of Theorem 3.1 with ¢* = f% 9 = 0 and y = + oo.
Therefore, we obtain in D

l'“i(t7 @) —v'(t, @) < w(t, 0),
whence, by (4.4), it follows that
w'(t, @) = vi(t,2) for (¢, m)eD.

(4.3)

Now, we will prove a slightly more general uniqueness criterion.

THEOREM 4.2. Let the right-hand sitdes of system (2.1) satisfy inequalities
(4.1) with the function o (3, y) satisfying Assumptions H,. This being assumed
the mized problem (4.1), (4.2), (4.3) admits at most one parabolic, X -reqular
solution; this solution, if it ewists, is unique in the class of X -reqular solu-
tions.

Proof. For u(t, ) and »({, ) being two solutions of (4.1), (4.2),
(4.3) parabolic and X -regular respectively Z -regular in D), infroduce the
notations at the beginning of the proof of Theorem 3.1. The assertion
of Theorem 4.2 is then equivalent with

(4.5) Wit) =0 forot<T.
Now, quite similarly as in the proof of Theorem 3.1, we show that
W(t) is continuous in <0, T,
(4.6) W) =20
and the differential inequality (2.8) is satisfied in the set
{te (0,T): W(t)> 0}.
From the above facts it follows that (see (), § 14) (4.5) holds true.
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Remark. Theorem 4.2 does not follow from Theorem 4.1 since here
the function o(f, ) is not supposed to be continuous for ¢ = 0.

5. Continuous dependence of the solution.

THEOREM b.1. Suppose all the assumptions of Theorem 4.1 to hold
true and
(5.1) Bi(t, #) > B* > 0.

Let u(t, x) be the parabolic, X -regular solution of (4.1), (4.2), (4.3) in D.
Denote by v(t, x, &) a Z-regular solution in D of the system

(5.2) 'vnt; =ff(t,w,v,'vi', 'ZJL,,’D(??, )) (0 =1,...,m),
satisfying initial conditions
{5.3) ' (0, ) = ¢'(m, &) for e

and boundary condilions
Bi(t, 2)vi(t, &) — (¢, 2) ot [dl} = o' (t, @, e) for (t,m)e Dy,
vi(t, @) = ¥'(t, @, 8)  Sfor (¢, 2)e I\ Ty
Suppose that

(5.4)

(6.5) |fi(t, 2, u, g, 7y 2) —£2lt, @, u, 2,7, 2)| < ¢,
{6.6) o' () &) — 9" (@)| < e,
(5.7) I'Pt(ta &y 3)"‘#’1(77: ?)| < e.
Under these assumplions .
{5.8) lin(::v(t,m, e) = u(t,s) wuniformly in D.

Proof. By (4.1) and (5.5) we have

[fi(t, @, u, q,7, 2)—fi(t, @, B, q, 7, 2)1sgn (uf — '),

(5.9 .
(&:9) ff(t,mlax{lu"—ﬂ"la llz —#]]) +&-

Denote by o,(?, 7) the right-hand maximum solution through (0, n) of
the ordinary differential equation

dyjat = olt, y)+e.

It is known (see (), § 10) that for & > 0 and 5 > 0 sufficiently small w,(t, 7)
exists in the interval {0, T) and

Im w,(t ) = «(, 0),

&=»0,7—0
whence, by assumption (4.4) we obtain
(5.10) lim w(t,n) =0 uniformly for 0 <t < T.

g—0,7—+0
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Since (1, 7) is increasing with regard to ¢ and w,(0,7%) =15, Wwe
easily check that putting
B =minB*> 0, 75 =max(e,¢/B),
k
we get _
£ Biwc(t; ),

whence in view of (5.6) and (5.7)

(6.11) |9 (%, &) — ¢ (@)1 < 71,

(5.12) v (t, &, &) — (2, 2)] < min (o, (¢, 9), Bo,(t, ).

In virtue of (5.9), (4.2), (4.3), (5.3), (6.4), (5.11) and (5.12) we check that
all assumptions of Theorem 3.1 hold true with ¢* = jf*, »* = 2'(, @, ¢),

7 = max(e ¢/B), y = T, with ¢ replaced by o+« and w(t, n) replaced
by w,(t, 7). Therefore, we have in D

lut(t, @) — ' (t, @, )| S wiltyn) (3 =1,...,m).

But, 7 = max(e, ¢/B) — 0 as ¢ — 0. Hence, the last inequality together
with (5.10) implies (5.8).

6. Final remarks. All theorems of this paper are valid for more
general domains than the cylinder D. Indeed, the cylinder may be re-
placed by a region £ having following properties (see (1), § 33):

(a) 2 is open, contained in the zome 0 < ¢ < T', and the intersection
of © with any closed zone 0 <t<t, < T is bounded,

(b) the projection S; on the space (24,...,%,) of the intersection
of 2 with the plane ¢ = #, is, for any %, <0, T), non-empty,

(¢) the point (¢, #) being arbitrarily fixed in 2, to every sequence ?,
such that ?,¢ <0, T) and ¢, — 1, there iy a sequence #” so that a”< S, and
x — .

If we denote now by X that part of 02 which is contained in the
open zone 0 < t < T and if we assume that the right-hand sides f*(t, , u,
q, r, #) of (2.1) are defined for (i, z)e Q2 for u, g, r arbitrary and z¢ 0, (S)),
then all the proofs of theorems remain unchanged.
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