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Intersection of essential cluster sets

by A. K. Lavex (Burdwan, India)

Abstract. Let f: H—~ W, where W is a topological space and H is the open upper half
plane above the real line R. The essential cluster set of f at xeR, denoted by C,(f, x), is the set
of all we W such that for every open subset U of W containing w, x is a point of posifive upper
ouler density of the set f~!(U). The directional essential cluster set C,(J, x, 8) of fat x in the
direction 8 is the set of all we W such that for every open subset U of W containing w, x is
a point of positive upper outer density (linear) of the set f~!(U) n Ly(x), where Ly(x) is the half
ray in H emanating [rom x and having direction 6.

It is proved that if W is compact, normal and second countable and if f is arbitrary, then

(i) for fixed 0e(0, n)

Clhx AC, (L0 # O
at almost every xR, and

(i) for fixed xeR,

Celfs %, ONC.(f, x) # O

for almost every 8¢&(0, m).

1. Let H denote the open upper half plane above the real line R and let
z and x denote points on H and R, respectively. For a set 4, u* A denotes
the (Lebesgue) outer measure, linear or planar, according as A is linear or
planar. Let, for xeR, 0¢€(0, n), and r > 0,

Ly(x) = {z: zeH; arg(z—x) = 6},
S(x,r)={z: zeH; |z—x| <r},

and
Lo(x,r) = Lg(x) nS(x, r).

Let E < H. Then the upper outer density d*(E, x) and lower outer density
d*(E, x) of the set E at x are defined by
. 1*(EnS(x, r)

(1) d*(E, x) = lir?_.soup S0

and

W (EnS(x, 7)
(2) d* G(E, x)—ln;xllonf Sk
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respectively. The definitions of the directional upper [lower] outer density
dax(E, x) [d¥(E, x)] of E at x in the direction 0 are obtained from (1) [(2)] by
replacing S(x, r) by Lg(x, ). Furthermore, if d*(E, x) =d*(E, x), the com-
mon value is called the outer density of E at x and is denoted by d*(E, x).
Similar is the case for directional outer density d¥(E, x) of E at x in t}lc
direction 6. In particular, if the sets concerned are measurable, then u*, d*
d*, d* and df will be replaced by p, d, dy, d and d,, respectively.

A set E is said to have the Baire property if E =G AQ
=(GuUQNGNQ), where G is open and Q is of the first category. If, in
particular, the set Q is countable, then E will be said to have the restricted
Baire property.

A function f: H— W, where W is a topological space, is said to have
restricted Baire property if for every open set U c W, f~'(U) has restricted
Baire property.

Let f: H — W, where W is a topological space. Then the essential cluster
set C,(f, x) of fat x is the set of all w e W such that for every open set U of
W, containing w, d*(f~'(U), x) > 0. The definition of directional essential
cluster set C,(f, x, 6) of f at x in the direction 6 is obtained from the
definition of C,(f, x), simply replacing d*(f ~*(U), x) by d§(f~'(U), x).

Throughout the paper W is taken to be a topological space having
a countable basis; whenever other restrictions are necessary for W only those
will be mentioned therein. The closure of a set A will be denoted by A.

2. Goffman and Sledd proved that if f: H—> R is measurable and if
0€(0, n) is a fixed direction, then except a measure zero set of points x on R,
C.(f, x) = C,(f, x, 0). If further f is continuous, then the exceptional set is
also of the first category, [2], Theorem 2. Belna, Evans and Humke also
proved that if f; H — W is measurable, where W is the Riemann sphere, then
except a first category set of measure zero on R, the set [6: 6¢(0, n);
C.(f, x) = C.(f, x, 6)] has measure equal to n. If further f is continuous,
then except a first category set of measure zero on R the above set is also
residual in (0, ), [1], Theorem 2. Authors in [1] also showed that the last
part of their result is not true for arbitrary functions and they raised
a question whether the first part 'of their theorem could be proved for
arbitrary functions. The following example shows that the first part of either
of the above theorems is not true for arbitrary functions.

ExampPLE 1. There exists a non-measurable function f: H — R such that
at every point xeR,
Ce(fs ¢ C.(f, x, 0)
for every direction 8¢(0, n).

Proof. In [6] Sierpinski constructed a non-measurable set S in H with
the following properties:
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() every line in the plane contains almost two points of S, and
(i) for every measurable set E, u*(SNE)=
Let f be the characteristic function of S. Then evidently

leC.(f,x) and C,(f,x,6) = 0]

for each xeR and for every fe(0, m).

In this note we prove in Theorem [ (resp. Theorem 2) that if f is
arbitrary, then for fixed 8€(0, n) (resp. xeR) C,(/, x, 0) intersects C,(f, x)
except a set of points x (resp. 6) of measure zero on R (resp. (0, m). In-
Theorem 3 we also extend the second part of the theorem of Goffman and
Sledd cited above to a larger class of functions having restricted Baire
property.

3. To prove our results we need the following lemmas.

LemMa 1. Let f: H— W be arbitrary, where W is a compact space, and
let F < W be a closed set such that C.(f, x)nF = Q. Then

d*(f =1 (F), x) = 0.

Proof. Since F is closed and disjoint from C,(f, x) there exist points
Wy, W3, ..., W, in F and corresponding neighbourhoods V{, V;, ..., ¥, of
Wy, Wa, ..., W, such that

Fc UF
i=1
and
. W) nS(x, )]
I =0
0 uS (x, 7)
fori=1, 2, . k. Hence
lim LTI F) NS ] 0
r—0 pS(x, T) '

completing the proof.

LeMMA 2. Let f: H — W be arbitrary, where W is a compact space, and
let G= W be an open set such that C,(f, x,8) = G. Then

df(f71(G), x) =

Since W\G is closed, as in Lemma 1, d¥(f~'(W\G), x) =0 and so the
proof of Lemma 2 is clear. :

LemMMA 3. Let E = H be arbitrary and let 6€(0, n) be a fixed direction,
then the set

9 (E, 0) = {x: xeR; d¥(E, x) > 0; d*(E, x) =0}

is of measure zero.
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Proof. Let S be a measurable cover of E such that uS = u*E. Then
S N Ly(x) is measurable for almost all xeR. Let

F(8) = {x: xeR; dy(S, x}> 0; d(S, x) =0},

Then
(1) 2,0 c FS)uX,
where ¢ is the set of all xeR for which S Ly(x) is non-measurable.

By Lemma 3 of [5], the set #(S) is of measure zero and since £ is also
of measure zero, by (1) 2(E, ) is of measure zero.

LemMa 4. Let E = H be arbitrary and let for xe R, d*(E, x) = 0. Then
the set '
S(E, x) = {0: 0&(0, m); d§ (E, x) > 0}
is of measure zero.

Proof. By considering a measurable cover S of E such that uS = u*E
and applying Lemma 6 of [5] the proof is completed as in Lemma 3.

LemMma 5. If E < H has restricted Baire property and lf 0€(0, n) is a fixed
direction, then the set

S (E, )= {x: xeR; dy(E, x} =0; d(E, x) > 0}

is a first category set of measure zero.
Proof. Let E=GAQ, where G is open and Q is countable. Let

F(G) = {x: xeR; dy(G, x) =0; d(G, x) > 0}.
Then clearly ’
(1) ¥ (E, 0) = £(G).

By Lemma 2 and Lemma 3 of [2] it follows that the set #(G) is a first
category set of measure zero. Hence by (1) ¥ (E, 6) is a first category set of
measure Zzero.

‘THeoReM 1. If f: H— W is arbitrary, where W is compact and normal
space, and if @€(0, n) is a fixed direction, then except a measure zero set of
points x on R

Ce(f, x, )NC.(f, ) # O.
Proof. Let
2(0) = {x: xeR; C.(f, x, ) 0 C.(f, x) = O}

and let # be a countable basis of open sets for the topologj of W and also
let & be the collection of all sets G expressible as a finite union of sets in 4.
Then ¢ is a countable collection of sets G. For Ge¥, let

2(f71(G), 0) = {x: xeR; d§ (f~*(G), x) > 0; d*(f ~*(G), x) = 0}.
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Let xo€ Z(0). Then the closed sets C,(f, xo. 8) and C,(f, x,) are disjoint.
This fact together with the fact that W is compact and normal ensure that
there is Goe% such that C,(f, xo, ) = G, and Gy C,(f, xo) = @. Hence
Lemma 2 and Lemma 1 respectively imply that d¥(f~'(G,), xo) =1 and
d*(f~'(Go). xo) =0. Thus xo€Z(f~'(Gy), 0) and consequently

(1) 20 = U{2(f1(G), 0): Ge%).

By Lemma 3 each of the sets &/(f ™! (G), ) is of measure zero and since % is
a countable collection, by (1), () is of measure zero. This completes the
proof of Theorem 1.

THeoreM 2. If f: H — W is arbitrary, where W is a compact and normal
space, then at each point x on R, except a measure zero set of directions
fe(0, n)

C.(f, x,0nC.(f, x) # ©.
Proof. Let, for xeR,
8(x) =16: 0€(0, m); C.(f, x, 0)n C.(f, x) = D]

and let # and % be the same as taken in the proof of Theorem 1. For
GeY, let

3(f~1(G), x) = {8: 0e(0, m); dF (1 (G), x) > 0].

Let 0,e9(x). Then the closed sets C,(f, x, 8o) and C.(/f, x) are disjoint.
This fact together with the fact that W is compact and normal ensures that
there is Goe¥ such that C,(f, x, 8,) = G, and C.(f, x)n G, = @. Hence
Lemma 2 and Lemma 1 respectively imply that 4} (f~'(G,), x)=1
and d*(f~1(Gy), x) =0. Thus 8,€3(f ' (Gy), x) and consequently ~

(1) 3(x) =U {8(f~1(G), x): Ge¥).

By Lemma 4, each of the sets 9(f !(G), x) in the union (1) is of
measure zero and hence by (1) 9(x) is of measure zero. This completes the
proof of Theorem 2.

We now include two examples to ensure that the exceptional sets of
Theorem. 1 and Theorem 2 may be any set of measure zero.

ExampLE 2. Let E = R be any set of measure zero. Also let
P =H\U L(x): xeE}.

Let f be the characteristic function of P. Then we have"

(i) C.(f,x)=1{1} for all xeR,
(if) C.(f, x,m/2)= 1[0} [for xeE,
=1} for xeR\E.



54 A. K. Layek

This example shows that the exceptional set of Theorem 1 need not be of the
first category.

ExamprLE 3. Let xeR be fixed and let @(x) be any set of direction
6 (0, m) of measure zero. Let Q be a set defined by

Q = H\U {Ly(x): 6O (x)].
Then, if f be the characteristic function of the set 0, we have
() C.(f %) = (1] |
(ii) C.(f, x,0)=1{0] for 0e®(x)
= {1} for 0€(0, n)\O(x).

This example shows that the exceptional set of Theorem 2 need not be of the
first category.

-~

Tueorem 3. If fi: H —» W has the restricted Baire property and if 8¢(0, )
is a fixed direction, then except a first category set of measure zero on R,

Ce(fy ) = Ce(f, x, 0).

Proof. Let # = {V,} be a countable basis for the topology of W.
Also let

E,=f"'(V), T={x:xeR; C.(f,x)¢C.(f x0)
and
F(E,, 0) = {x: xeR; dy(E,, x) = 0; d(E,, x) > 0}.
Then clearly
0y T< | Y(E,, 0).

By Lemma 5, each of the sets & (E,, 0) is a first category set of measure zero
and hence, by (1), T is a first category set of measure zero and this completes
the proof of the theorem.

Remark. In the hypothesis of Theorem 2 of [1], Theorem 1 and
Theorem 3 of [3], and also of the theorem of [4] the continuity property can .
be replaced by the restricted Baire property of the function, by simple
modifications of the concerning lemmas.

I am grateful to Dr. S. N. Mukhopadhyay for his kind help and
suggestions in the preparation of the paper.
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