A. OLEJNICZAK (Wrocław)

NOTE ON THE FIRST ORDER ORTHOGONAL PROJECTIONS

Let

$$W = \{ w \in L^2(-1, 1) : w \ge 0, \int_{-1}^1 w(y) \, dy = 1 \}$$

and let $\{\varrho_i^w\}_{i=0}^{\infty}$ be the system of the orthonormal polynomials with respect to the weight function $w \in W$. Then for any $f \in C[-1, 1]$ the equality

$$(L_n^{w} f)(x) = \sum_{i=0}^{n} \varrho_i^{w}(x) \int_{-1}^{1} w(y) f(y) \varrho_i^{w}(y) dy$$

defines an orthonormal projection of the space C[-1, 1] onto Π_n . The norm of this projection is ([2])

(1)
$$||L_n^w|| = \max_{-1 \le x \le 1} \int_{-1}^1 w(y) \left| \sum_{i=0}^n \varrho_i^w(x) \varrho_i^w(y) \right| dy.$$

In [1] the numerical values of the norms (1) for the weight functions $w(x) = (1-x^2)^{\lambda-1/2}$ for $\lambda = -.1$, .0(.2)1.0, 3.0, 5.0 and $1 \le n \le 10$ are given. These results are a motivation for the following

PROBLEM. For any natural number n, find the weight function $w^* \in W$ With the property

(2)
$$||L_n^{w^*}|| = \inf_{w \in W} ||L_n^w||. \quad \blacksquare$$

We consider the simplest case n = 1 and we prove that the best weight function does not exist.

Let $\hat{W} \subset W$ denote the subset of all even functions. For any $w \in W$ the orthonormal polynomials have the form

$$\varrho_0^{\mathbf{w}}(x) = 1, \quad \varrho_1^{\mathbf{w}}(x) = (x - I_1) / \sqrt{I_2 - I_1^2}, \quad \dots$$

where

$$I_k = \int_{-1}^1 w(y) y^k dy.$$

We note that $|I_k| \le 1$ for any natural k.

At first we consider the case $w \in \hat{W}$, so that $I_1 = 0$. We have LEMMA 1. If $w \in \hat{W}$ then

$$||L_1^w|| = \max_{-1 \le x \le 1} \int_{-1}^1 w(y) \max\{1, |xy|/I_2\} dy. \quad \blacksquare$$

LEMMA 2. If $w \in \hat{W} \cap C[-1, 1]$ then

$$||L_1^w|| = 1 - 2 \int_{I_2}^1 w(y) dy + (2/I_2) \int_{I_2}^1 w(y) y dy.$$

Proof. Since w is even we may assume that $0 \le x \le 1$. From Lemma 1 we have the equality

$$||L_1^w|| = \max_{0 \le x \le 1} \Lambda_1^w(x) = 2 \max_{0 \le x \le 1} \int_0^1 w(y) \max\{1, xy/I_2\} dy,$$

hence

$$A_1^w(x) = \begin{cases} 1, & 0 \le x \le I_2, \\ 2 \int_0^1 w(y) \, dy + (2x/I_2) \int_{I_2/x}^1 y w(y) \, dy, & I_2 < x \le 1. \end{cases}$$

By continuity of w, we have $[\Lambda_1^w(x)]' \ge 0$ and $\Lambda_1^w(x) \le \Lambda_1^w(1)$.

Let us consider the sequence of the weight functions $w_n \in \hat{W} \cap C[-1, 1]$ of the form

$$w_n(x) = \begin{cases} 0, & |x| \leq (n-1)/n, \\ n^2 |x| - n(n-1), & (n-1)/n \leq |x| \leq 1. \end{cases}$$

Using these functions we obtain

LEMMA 3.

$$\inf_{w \in W} ||L_1^w|| \leqslant \inf_{w \in \hat{W}} ||L_1^w|| = 1. \quad \blacksquare$$

Now we may prove

THEOREM. The best weight function w* does not exist.

Proof. Let us assume that such a function $w^* \in W$ exists. Of course, it is impossible that $w^*(y) \equiv 0$ a.e. Also it is impossible that $I_2 = 1$, $I_1 = \pm 1$ and $I_2 = I_1^2$. Thus

(3)
$$I_1^2 < I_2$$

The norm of the projection $L_1^{w^*}$ is equal to

$$||L_1^{w^*}|| = \max_{-1 \le x \le 1} \int_{-1}^{1} w^*(y) \left| 1 + \frac{(x - I_1)(y - I_1)}{I_2 - I_1^2} \right| dy.$$

Then using orthogonality for any $-1 \le x \le 1$ we have

$$1 = \int_{-1}^{1} w^*(y) \left[1 + \frac{(x - I_1)(y - I_1)}{I_2 - I_1^2} \right] dy \leqslant \int_{-1}^{1} w^*(y) \left| 1 + \frac{(x - I_1)(y - I_1)}{I_2 - I_1^2} \right| dy = 1,$$

hence

(4)
$$\int_{-1}^{1} w^{*}(y) \min \left\{ 0, 1 + \frac{(x - I_{1})(y - I_{1})}{I_{2} - I_{1}^{2}} \right\} dy = 0.$$

The function

$$\Phi_x(y) = \min \left\{ 0, \ 1 + \frac{(x - I_1)(y - I_1)}{I_2 - I_1^2} \right\}$$

is nonzero for $x, y \in [-1, 1]$ if

$$-1 \le y < \frac{I_1 x - I_2}{x - I_1}$$
 and $\frac{I_2 + I_1}{1 + I_1} < x \le 1$

or

$$\frac{I_2 - I_1 x}{I_1 - x} < y \le 1$$
 and $-1 \le x < -\frac{I_2 - I_1}{1 - I_2}$.

The equality (4) is possible only if $w^*(y) \equiv 0$ a.e. for

$$y \in \left[-1, -\frac{I_2 - I_1}{1 - I_2}\right] \cup \left(\frac{I_2 + I_1}{1 + I_1}, 1\right].$$

We may assume $I_1 \ge 0$, since if $I_1 < 0$ then we may consider the function $\overline{w}(x) = w^*(-x)$ which has the properties

$$\int_{-1}^{1} \overline{w}(y) \, dy > 0 \quad \text{and} \quad ||L_{1}^{\overline{w}}|| = ||L_{1}^{w^{*}}||.$$

It is easy to verify by the Cauchy-Bunyakovsky inequality that

$$\alpha = \frac{I_2 + I_1}{1 + I_1} > \frac{I_2 - I_1}{1 - I_1} = \beta,$$

hence

$$I_2 = \int_{-\beta}^{\alpha} w^*(y) y^2 dy \le \max_{-\beta \le y \le \alpha} y^2 = \left(\frac{I_2 + I_1}{1 + I_1}\right)^2.$$

From the last inequality we obtain $I_2 \le I_1^2$. In view of (3) this is impossible.

References

- [1] W. A. Light, A comparison between Chebyshev and ultraspherical expansion, J. Inst. Maths. Applics. 21 (1978), p. 455-460.
- [2] S. Paszkowski, Zastosowania numeryczne wielomianów i szeregów Czebyszewa, PWN, Warszawa 1975.

INSTITUTE OF COMPUTER SCIENCE UNIVERSITY OF WROCŁAW 51-151 WROCŁAW

Received on 1984.04.10