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1. Introduction. Recently, many papers dealing with admissibility
of estimators of parametric functions with matrix loss have been published
(see, for example, [1]-[3], [6], [6] and [9]).

Kagan and Salaevskii gave in [5] some characterization of the normal
distribution. Considering the linear Gaussian model, they proved that
least squares estimators are admissible in the class of unbiased estimators
with matrix loss .if and only if the distribution of a sample is normal.

The aim of this paper is to show that in the multidimensional Gaussian
model an analogical characterization can be given. Moreover, it is shown
that in the case of the p-dimensional normal distribution least squares
estimators are admissible with matrix loss when p < 2 and can be inad-
missible when p > 3. If a covariance matrix X is known and p > 3, then
least squares estimators aze inadmissible.

2. Characterization of the normal distribution by some properties
of least squares estimators. Let

(1) X = A6 +e,

where A = (a;) is a known matrix of order n X m, @ = (0;) is a unknown
parameter matrix of order m X p, and e = (¢;) is a random matrix of
order »n X p.

We assume that m
I. rankA = m, m<mn, and D> a;>0 for ¢ =1,...,n.
. =

IL. (@, ..., 0,,)e2, where 2 is an open subset of the (m x p)-
dimensional Euclidean space E™*®.

III. ¢ = (6, ..., €5), ¢ =1,...,7m, are independent and identically
distributed random vectors with distribution function F(«,, ..., ,) such
that E¢' = 0 and Vare' = Z.
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In this paper we deal with the problem of estimation of G@, where G
is a matrix of order k X m, and we postulate that the loss function is
a matrix defined by

(2) L(n, GO) = (n—GO) (1— GO)",

where 7 is a decision matrix of order k x p.
Thus an estimator #,(X) is said to be better than 7,(X) with matrix
loss given by (2) if, for every @,

Bg = E¢ L(n,(X), GO)—Eg L (1,(X), GO)

is a non-negative definite matrix (for short, Bg > 0), and B(.,0 # 0 for

at least one @,¢ Q.
An estimator #(X) is said to be admissible if and only if there does

not exist an estimator better than »(X).

THEOREM 1. 1° If n>2m+1 and if there exists a mon-degenerate
matriz G of order m x m such that G = G(ATA) ' ATX is admissible in
the class of unbiased estimators of GO, then F(x,, ..., x,) is a p-dimensional
normal (possibly degenerate) distribution.

2° If F(xy,...,o,) 18 a p-dimensional non-degenerate normal distri-
bution and if n = m, then, for every (k x m)-matric G of rank k < m, the
estimator G = G(ATA)"'ALX is admissible in the class of unbiased esti-
mators of GO.

Remark. It is easy to prove that Theorem 1 holds when the loss
function is quadratic, i.e.

k p
L(n, 6O) = ZZ(ﬂij*(G@)u‘)z'

For p = 1 this theorem was proved by Kagan and Salaevskii [5].
To prove Theorem 1 we need two lemmas.

LEMMA 1. Let
Y =X-A4(4T4)'ATX
and
= G—E,(GY),

Q>

where

~

G =G(ATA)'ATX.
Then
(1) G is an unbiased estimator of GO, i.e. EQG GO;
(ii) EO(G Go) (G GO < (G Go) (G GO)T with equality hold-
ing if and only if E (GQ|Y) = 0.
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Proof. Representing Y in the form of
Y =X—A4A0—-A4(ATA)' A" (X — 409),

we see that the distribution of ¥ does not depend on @.
Consequently,

Eo (Bo(G1Y)) = Ey[Ey(G1Y)] = E,G = 0.
This implies that
Eo@ = EoG = GO.
In order to prove (ii) we observe that ,
(3)  Eo(G—GO) (G —Go)
= Eg(G—&) (6 —@)T +Eo(G—GO) (G—GO)T +Eo(G—G) (6 —GO)T +
+Eq(G—GO) (G—G)”.

Since

~

Ee(G—G) (G—GOT
— Eo{E,(GIY) [G(AT A) ' AT(X — A6) —E,(GY)]™},

and since the distributions of ¥ and X — A@ are independent upon @,
we have

~

Eo(G —G) (G — GO)T = E,{Eo(G|Y) [G(AT A)"' AT X — E,(GIY)]7)
= Eo{E,(GIY) [G—Eo(GIY)]"} = 0.

Using (3), we obtain
Ee (G — GO) (G — GO)T = Eo(G—GO) (G — GO+ Eqg (Eo(GIY)E,(GIY)T).

Because the last term on the right-hand side is a non-negative definite
matrix, it follows that

Eo(G— GO) (G—GO)T = Eg(G— GO) (G— GO .
To complete the proof, it is sufficient to note that
Eq (Eo(GY)Eo(GIY)7) = 0

if and only if E,(G|Y) = 0.
LEMMA 2. Let G and Y be defined as in Lemma 1. If n > 2m+1 and if

Eo(élY) = 0, while G is a non-degenerate (m X m)-matriz, then F(x,, ..., x,)
18 a p-dimensional normal (possibly degenerate) distribution.
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Proof. Since Eo(dlY) = 0, we have
Eo (AT Xexp (itr¥TT)) = 0,
where T is an arbitrary (n X p)-matrix. If, in addition, T satisfies the
condition AT = 0, then
YT = X'T,
and, consequently,
ATE (Xexp (itr X"T)) = 0,

or, equivalently,

n n 0
) Zl[aksﬂw(tu, -..,tlp>aTw¢<tkl,.-.,tkp>] ~0

k=
£k

for every s =1,...,m,j =1,...,pand t, (u =1,...,n;0v =1,...,p)
such that A™T = 0, where T = (¢,,), while ¢(t,, ..., t,) is the characteristic
function of F(x,, ..., z,).

Because there exists a neighbourhood % of zero such that ¢(t,, ..., t,)
# 0 for (t,,...,1,)e%, equations (4) can be written for (&, ..., %)%,
k=1,...,m, such that A™T = 0, where T = (t,,), in the form

n

0
(5) Z[a’ks (W ‘p(tkly rey tkp))/‘/’(tkn sy tkp):l = O’

k=1
s=1,...,m, jJ =1,...,p.

Introducing the notation

0 .
(6) "Pj(tla-“7tp)=%ln¢(t11'--7tp)7 )1=1,...,p,
'j

Yw) = (Tij(V)) = ("/’j(Vﬂ’ ceey Vip))’
t=1,..,k3=1,..,p,

where V = (V;) is a (k X p)-matrix, we can write formula (5), for T satis-
fying the condition ATT = 0, as follows:

(7) ATY(T) = 0.

Because n > m and rank A = m, there exists an [»n X (» —m)]-matrix
M having the following two properties: the identity matrix can be obtained
from M through ecrossing out m rows, and

(8) ATM = 0.
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Then, for any matrix S of order (n —m) x p, there holds ATMS = 0,
and, consequently, AT¥(MS) = 0.

Now, we shall show that the equation in R, MR = ¥(MS), has a solu-
tion R = ¥(S).

Let Wij(M) = W;I) for j =1,...,m, where W,(M) denotes the
s-th row of the matrix M. Then W,(R) = W, (MR) = Y’(Wik(MS))
= ¥Y(W,(8S)) = W,(¥(S)) for every k.

Hence R = ¥(S).

In view of this fact, for every [(n—m) X p]-matrix S, there holds

(9) Y(MS) = M¥(S).

Next, we show that each column of M having the two mentioned
properties has at least two elements that are diffcrent from zero. One
of them, in the j-th column, is m,; = 1. Now suppose, for the contrary,
that there exists j, such that my; = 0 for all k 4; . Then (8) would
imply that Ay = 0 foralll =1,..., m which would contradict assump-
tion I. Thus every column of M has at least two elements different from
ZeTo.

Now let M, be the [m X (n — m)]-matrix obtained from M by omitting
the rows with indices ,, ..., ¢,. Clearly, in every column of M, therc
exists at least one element different from zero. Since n > 2m 41, at least
one row of M,, say the j-th row, has two elements different from zero,
say my;, and mj.

Let S stand for a matrix such that all its rows, except the rows with
indices a and B, have all elements equal to zero. The a-th and S-th row
can have arbitrary elements. Then, in view of (9) and the fact that
¥(0,...,0) =0, we obtain

(10) W (Mo (Sary -+ -y Sup) +Mig(Sp1s -5 Spp))
= Y(Mja(Sars -y Sap)) + ¥ (mi5(8p1, ...y Sgp)),

where (S, ..., 8;,) is the i-th row of S.
Sinee, for j =1, ..., p, 8,; and S arc arbitrary numbers, it follows
from (10) that, for all vectors U, Ve#, there holds

P(U+V) = Y(U)+ ¥(V).
This implies that, for all (;,...,%;)e%, there is

»
Pi(tyy ooy tp) =2bﬁtg‘, t=1,...,p,
iz

where b, = y; (j-th row of I,), I, being the identity matrix of order p x p.

7 — Zastosow. Matem. 13.4
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~Consequently, it follows from (6) that, for all (¢, ...,1%,)e%,

p 1 .p_1
(11) (]”(tl, ceey tp) = exp (2 b”t‘tJ—}—EZ bﬁt%).
1=1

i>j=1

Since ¢ is a continuous function, we conclude that formula (11) holds
for all teR?. .

Let ¢(t,,...,1,) be the characteristic function of the distribution
of the random vector (X, ..., X,). Applying Marcinkiewicz’s theorem [7]
to every linear function of X,,..., X,, we conclude that ¢(i, ..., ;)
is the characteristic function of a p-dimensional normal (possibly degen-
erate) distribution. Thus, the proof of Lemma 2 is completed.

Proof of Theorem 1. Lemmas 1 and 2 imply immediately part 1°.
To prove part 2° note that under assumptions I, IT and III the statistic
AT X is sufficient and complete. This implies then that G — G(ATA)"'ATX
is the unique unbiased estimator of GO based on the sufficient statistic
AT X. On the other hand, the Rao-Blackwell theorem [8] implies that G
is admissible in the class of unbiased estimators of G@O.

3. On the admissibility of the least squares estimators.

THEOREM 2. Let p <2 and let X be a random matriz given by (1);
let ¥(x,,...,x,) be the distribution function of a p-dimensional non-degen-
erate normal distribution, and let G be a non-degenerate (m X m)-matriz.
Then, wunder assumptions I, II and IIL formulated in Section 2, G =
G(ATA)' AT X is an admissible estimator of GO with matrix loss defined
by (2).

To prove Theorem 2 we need the following lemma:

LEMMA 3. Let Z = (ATA)"?ATX and 0 = (ATA)?@. Moreover,
let Z' and ©° stand for the i-th rows of Z and Z), respectively. 3

If p<2, then Z' (i = 1,...,m) is an admissible estimator of & with
quadratic loss.

In the proof of Lemma 3 we use the theorem of Stein (ef. [10] and [11]).

Let Z be a finite-dimensional real coordinate space, # an arbitrary
space and let the s-algebra # be a product, # = %, X #,, where %, con-
sists of the Borel sets in 2, and 4, is an arbitrary o-algebra of subsets
of #. Let the measure 4 on & x % be the product 4 = uv, where u is a Le-
besgue measure on %, and » is an arbitrary probability measure on 4%.,.

Further, let the parameter space £ coincide with Z.

We observe (X, Y) whose distribution for given we is such that ¥
is distributed according to », and the conditional density of X — w given Y
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is p(-1Y), a known density. Moreover, we assume that, for all y <%,

fp(w, y)de =1 and pr(x,y)da: = 0.
& &

THEOREM (Stein). (a) If dimZ =1 and, in addition, the condition
[( [#p(@, y)da)" dr(y) < o
Yy x

is satisfied, then x is an admissible estimator of w with quadratic loss.
(b) If dimZ =2 and if, for some 6 > 0, the condition

J( [ 1a210g**12l2p (2, y) da)} dv (y) < oo
Yy Z

18 satisfied, then x is an admissible estimator of w with quadratic loss.

Proof of Lemma 3. In the case p = 1it is easy to see that Z7, ..., Z™
are independent random variables such that Z* (¢ =1,..., m) has the

normal distribution N (6%, ¢2), where o2I = VarX.
To apply the theorem of Stein, we put £ = R, % = R™ ', X = Z°,

Y =(Z'—6), ..., 27— @7, 2 @it Zm o™y,
where 6, ..., 0", @' ... O™ are arbitrary fixed numbers, w = 6,

(z,y) =p(x) = ! ex (_x2)= ! ex (——(Ef—)
p ' Y) =D - ]/;'co' XP 242 ]/ETO' 1Y 242 ’

(m—1)/2 m _ n
dv(y) = ( 1 ) exp(—— 2; Z(z"—@f)z)ndzf.

27mo? <
Jj=1
1#1 J#1

It is easy to verify that the assumptions of this theorem are satisfied.
Thus, it follows from (a) that Z® is an admissible cstimator of ©° with

quadratic loss. _ _
Since Z* does not depend on @’ for j +# 4, Z* is an admissible estimator

of @ for all @<R™

In the case p = 2 it is easy to see that Z', ..., Z™ arc independent
random vectors such that Z* has the two-dimensional normal distribution
N,(6 X).

To apply the theorem of Stein in this case we put & = R*, @ = R,
X =7,
Y = (Z2'—6, ..., 2 — @, Zi it . Zm_am,
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where ', ..., O~} @1, ..., @™ are arbitrary fixed elements of B, o = &,

1 1 ,
p(e,y) =ple) = — [Z] "V exp ( - :vZ"]w['),

27
1 \m-! 1w, -, = N T
dv(y) = (2ﬂ) IEI“(m’l)"zexp(—5Z(z’—@’)“?—l(z’—@’)T)Hdz’.
gt Ji

To verify the condition in (b) it is sufficient to note that log'*’|z|?
is integrable with respect to the Lebesgue measure in a neighbourhood
of zero, and that all moments of a normal distribution are finite.

Thus, for all @ «R**™, Z* is an admissible estimator of @ wilu quad-
ratic loss.

This completes the proof of Lemma 3.

To prove Theorem 2 we use the following proposition which allows
us to restrict further considerations to estimators based on the sufficient
statistic Z:

PROPOSITION. For every estimator A(X) of GO, the estimator ):(Z)
= Eg(1(X)|Z) is as good as A(X), that is, for all @<L,

Vo = Bo(A(X)—GO) (2(X)— GO)” — B (A(Z) — GO) (2(Z) — GO)T

i8 a non-negative definite matriz.
This proposition can be proved in an analogous manner as Rao-
Blackwell’s theorem.

Proof of Theorem 2. Suppose, for the contrary, that A(Z) is
a better estimator of GO than G =: G(ATA~")AT X; thus, for all 60

Bs = Eo(A(Z)— GO) (A(Z)— GO)T -~ Eg (G- GO) (G—GO)T <0

and Bg, # 0 for at least one @,e .
It is easy to sce that

By = G(A" A" Dy (G (AT 4)7'7)T,
where

Do = Eo(n(2Z)—6) (n(2Z)—6)" —Eg(Z—06) (Z—06)"
and
n(Z) = (AT AP G 1(Z).

Consequently, for all @¢Q, Dy <0 and Dg # 0 for at least one
Oye Q.
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Hence, for every @£, all diagonal elements of Dy are non-positive
(i.e., (Dg);; < 0) and at least one diagonal element, say Dg);;, is negative
for some 6,¢ L. _ .

Let Z%, 7' (Z) and @’ be the j-th rows of Z, (Z) and O, respectively.
Since, for all @<, (Dg); < 0 and (Dg,); < 0, for all @< there holds

Eo(n'(2)—0') (' (Z) — )" —Eo (2 — 0") (' — /)T < 0

with strong inequality for @ = @,. _ '
Thus »’(Z) is a better estimator of © than Z’ with quadratic loss.
This contradicts Lemma 3. Thus the proof of Theorem 2 is comple 2.

4. Inadmissibility of the least squares estimators in the casc p > 3.
In this section we show that, in the case p > 3, @ == G(ATA)"' AT X can
be an inadmissible estimator of G@.

Let X be a matrix of form (1), and let assumptions I, IT and IIT be
satisfied. Let F(x,,...,2,) given in assumption III be the distribution
function of a p-dimensional normal distribution such that & = I,,. Let G
be a non-degenerate (m x m)-matrix. Then therc exist estimators of G@
which are better than G = G(AT A)~' AT X. For example, it can be easily
shown that

& (X) = GATA) " Z,

where Z is a matrix having the same rows as Z = (AT A) "2 AT X, cxcept

the first one Z' which is multiplied by 1 —(p —2)/Z"(Z")?, is better than G.
However, if we replace more than one row in Z by Stein’s estimator,

then we can obtain an estimator which is not as good as G.

5. Acknowledgement. I wish to express my thanks to Dr. W. Klo-
necki for the encouragement during the preparation of this paper.
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BOGUSLAWA BEDNAREK-KOZEK (Wroclaw)

0 ESTYMAC)I W WIELOWYMIAROWYM MODELU GAUSSA

STRESZCZENIL

W pracy podano pewng charakteryzacje rozkladu normalnego. Rozwazajac

wiclowymiarowy model Gaussa-Markowa, udowodniono, Ze estymatory N.K. (otrzy-
mane metoda najmniejszych kwadratéw) pewnych funkeji parametrycznych sa
dopuszczalne w klasie estymatoréw nicobeigzonych z maciecrzowa funkeja straty
wtedy i tylko wtedy, gdy rozklad proby jest wiclowymiarowym rozkladem normalnym.

Ponadto pokazano, ze w przypadku p-wymiarowego rozkladu normalnego

estymatory N.K. 83 dopuszczalne z macierzowa funkeja straty, gdy p < 2. Gdy p > 3,
estymatory N.K. moga niec byé dopuszezalne. W rozdz. 4 pracy podano przykiad
obciazonego estymatora, lepszego od estymatora N.K. Przykiad ten dowodzi, ze
gdy macierz kowariancji jest znana oraz p > 3, estymatory N.K. 83 niedopuszezalne.



