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Abstract. We solve, under some regularity conditions, thc functional inequality
|F(Kx, KF(y, 2))— F(KF(x, y), Kz)| < ¢, where F is a binary operation on R* to be found. In the
case K =1 we exhibit some non-associative solutions of this inequality corresponding to the
stability of the associatlvity,

After the celebrated paper by Hyers [5] and the ideas introduced by Ulam
[6] the study of stability of functional equations has become an important field
of research.

The aim of this paper is to solve the functional inequality

(1) |F(Kx, KF(y, z))—F(KF(x, y), Kz)| < ¢

where ¢ is a given positive constant, the variables x, y, z and K run over
R*:=[0, o0) and the unknown function F is a continuous strictly increasing
binary operation on R* with 0 as a unit element,

A surprising result is that (1) is equivalent to the corresponding equation
F(Kx, KF(y, z)) = F(KF(x, y), Kz) which yields the associativity and homo-
geneity of F. But if we fix K =1 in (1) then we have the stability of the
associativity equation and it is possible to find non-associative solutions.

We begin with the following

THEOREM 1. Given ¢ > O let F be a binary operation on R* with 0 as a unit
element. If F satisfles the inequality (1):

|F(Kx, KF(y, 2)}—F(KF(x, y), Kz)| < ¢
Jor all x, y, z and K in R™, then F must satisfy the functional equation
(2) F(Kx, KF(y, z)) = F(KF(x, y), Kz)
Jor all x, y, z and K in R*.
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Proof. Il u > 1 the substitution K =u", ne N and x =0 in (1) yields
W F(y, 2)—-F("y, u"2) < ¢,

or equivalently
|F(y, 2)—F"y, u" z)/u"| < e/u",

whence

(3) F(y, z) = lim F(u"-y, u"2)/u"

for all y, z in R™ and for all u > 1. From (3) we obtain
4) F(y, z) = lim u"- F(y/u", z/u"),

whenever y, z are in R* and u < 1. Now we proceed to prove the associativity
of F. Using (1) and (3) we have for all x, y, and z in R*

|F(x, F(y, 2))—F(F(x, ), z)|

F(2"x, 2"F(y, 2)) F(2"F(x, y), 2"2)|

= |tim X TR i T 2
— lm |F(2"x, 2"F(y, z));IF(Z F(x, y), 2"z)|
< lim 22" =0,

whence the associativity of F follows, i.e., (2) is true for K = 1. Using this and
(3) we have for all x, y, z in R* and for all K > 1

|F(Kx, KF(y, 2))—F(KF(x, y), Kz)|
IF(K"+1JC, K"“F(y, Z))-—F(K'H'IF(X, _V), Kn+lz)l

= Jm K"
n+1 nt+1 F Kn+1F , Kn+1
- | tim TE0 KRG, 2) g, FIRTTHFG 9), K72
n—w K n—+cw K |

= K|F(x, F(y, 2))—F(F(x, y), z)| =0,

whence (2) holds whenever K > 1. In a similar way using (4) and the
associativity of F we show that (2) holds for K < 1.

THEOREM 2. Given >0 let F be a continuous, strictly increasing

two-argument function from R* x R* onto R* with 0 as a unit element. Then
F satisfies the inequality (1):

|F(Kx, KF(y, 2))~F(KF(x, y), Kz)| <e¢ for all x, y, z and K in R"

if and only if there exists a positive constant ¢ > 0O such that

F(x, y) = /x4,
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Proof. By the previous theorem, (1) holds if and only if the corresponding
equation (2) is satisfied by F:

F(Kx, KF(y, z)) = F(KF(x, y), Kz).
The substitution z =0 in (2) yields the homogeneity of F:
(5) F(Kx, Ky) = KF(x, y).

Also the substitution K = 1 yields the associativity of F, which together with
the conditions assumed on F implies [1] that F can be represented in the form
F(x, y) = f~}(f(x)+/ (), where f is a monotonic continuous function from
R* onto R* such that f(0) = 0. It is known [1] that the only associative
operations representable in this form which are homogeneous are
F(x, y) =x‘+)° for some ¢ > 0.

Now we turn our attention to (1) in the case where K = 1.

DErFINITION 1. Given & > 0, a binary operation F on R% is said to be
e-assoctative if (1) holds for K =1 and for all x, y, and z in R™, ie.

(6) |F(x, F(y, z))—F(F(x, y), 2)| < &.

Obviously any associative operation satisfies (6), but there are
non-associative solutions of (6). An easy way to construct such examples is to
apply the following

THEOREM 3. Let F and L be two binary operations on R and let & > 0 be
given. Assume that the following conditions hold for all a, b, ¢ in R*:

(i) L(a, L(b, ¢)) = L(L(a, b), ¢);

(ii) L(a, by = L(b, a);

(ii1) L(a, b) < L(c, b) whenever a < c;
(iv) L(a+e, ¢) € L(a, ¢)+ L(g, 0);

V) |L(a, b)—F(a, b)| < &;

(vi) F(a, b) = F(b, a).

Then F is 2(e+ L(0, e))-associative.
Proof. Using the hypotheses on L and F we have
L(F(a, b), ¢) < L(L(a, b)+¢, ¢) < L(L(a, b), ¢)+ L(e, 0)
= L(a, L(b, ¢))+L(e, 0) € L(a, F(b, ¢)+8&)+L(g, 0)
< L(a, F(b, ¢))+L(0, &)+ L(e, 0)
= L(a, F(b, ¢))+2L(0, ¢).
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Then we also have
L(F(c, b), a) < L(c, F(b, a))+2L(0, &),
so we can conclude using (vi) that
(7 |L(F(a, b), ¢)—L(a, F(b, o)) € 2L, ¢).
Finally, using (v) and (7) we obtain
|F(a, F(b, c))—F(F(a, b), ¢)| < |F(a, F(b, ¢)—L(a, F(b, c))|
+|L(a, F(b, ¢))—L(F(a, b), c)|
+|L(F(a, b), ¢)—F(F(a, b), c)|
< £-+2L(0, &) +& = 2(c+L(0, o)),
ie., F is 2(e+L(0, e))-associative.

COROLLARY 1. Given ¢ 2= O let F be a binary operation on R* satisfying one
of the following inequalities:

(1) |F(a, b)—Max(a, b)| < ¢/4;
(2) |F(a, b)—(a+b)| < ¢&/4,
Then F is e-associative.

Thus we have shown that “near” maximum or addition it is trivial to find
an g-associative operation. A natural question arises: what happens “near”
product? The answer is that the only ¢-associative operation close to product is
just product. This fact will be an’immediate consequence of the following
theorem whose proof follows the method introduced by Baker in [3]:

THEOREM 4. Given ¢ > 0 let F be an e-associative operation on R™. Suppose
that there exist a positive real number & and a bijective function f from R* into

R™ such that | f(x)—f ()| € g(lx—y|) for some non-decreasing function g from
R* into itself, and

|f(Fx, ) =f)f )| <8 for all x,y in R*.
Then necessarily F(x, y) = [ ~'(f (x)-f ).
Proof. For any x, y and z in R* we have
| (PG, )/ ) ~F ) 1) S () < |f(F(x y) f(z )~f (0).f (F(y. 2)
7S (FO. 2) =1 )1 0) f(Z)I
<|s(F r(x 9, 2) =1 (F(x, y)/ )
+| £ (F(FCx, ), 2)) f(Fx F(y, )
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+|/(F(x, P, 2))~f )£ (F(y, 2)
+f X)S(FW, 2)=f ) f ) f(2)
< 8+g(|F(F(x, y), )~ F(x, F(y, 2)))) +8+1f (x)|6
< 26+9(8)+| f ().
If we substitute z =f"'(n) we obtain

26+9(0)+1/ (x)8
n

(8) S (F(e, ) —f () )] <

Thus when n goes to infinity we obtain
0< |/ (F(x, y)—S(x) /()] <0,
ie, f(F (x,y) =1(x)f(y) and consequently F(x,y)= f"'(f(x)f(»).

COROLLARY 2. Given ¢ > 0 and 6 > 0 let F be an ¢-ussoclative operation on
R™ such that |F(x, y)~xy| <6 for all x, y in R*. Then F(x, y)=x'y.

Proof Substitute f(x) = g(x) =x in the previous theorem.

Finally, we point out an open question: Given an e-associative function
F on R™ is there an associative operation A such that |[F(x, y)—A(x, y) < K¢
for some K > 0? The answer to this problem would complete the study of the
stability of the associativity equation.
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