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ON AN ESTIMATION OF THE ROOTS OF ALGEBRAIC
EQUATIONS

1. Introduction. In this paper we give a method for determining
upper and lower bounds for the unique positive root of the equation

n
(1) o= ¥pa" (p,>0,7=1,2,...,n).
r=1

The knowledge of this root, or its upper bound, enables us to localize
zeros of other polynomials with complex coefficients. This follows from
the following theorem by Cauchy.

THEOREM. All zeros of the polynomial
(2) a2 '+ +a,,
with complex coefficients, lie in a circle
ol <R
where R is the positive root of the polynomial (1) with
Pr=lal (k=1,2,...,m).

This theorem plays an essential role in the majority of the known
methods for finding a circular region enclosing all zeros of a polynomial.
The method proposed here yields, in particular, the Westerfield bound [1]
and makes it possible to find an upper bound, which is usually better
than, and always at least as good as, the Westerfield bound. The pro-
Posed method gives also a lower bound for the positive root of (1).

2. The basic theorem. First, we shall prove some lemmas to be used
in the sequel.
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LeMMA 1. If there is

then
(3) D[ wian| < M.
k=1 j=1

The proof is by induction on m. Let m = 2 and
n

F(w) = Y((1—w) ay+ way).
k=1

The second derivative of F(w)

F'(w) = Zk(k—l)(aﬂc—alk)z((l—w)alk—l_ wa2k)k_27
k=2

is nonnegative for every w €[0,1] and so the function F(w) is convex
on [0,1]. On the other hand
F(0) = Y, <M and F(1)= ) di<M.
k=1 k=1
Hence F(w) < M for every w [0, 1].
Now we shall show that if the lemma holds for m = p, then it holds
also for m = p+1 (p is a positive integer).

Let
Z w; =1

i=1

and s be such that 1<s<p+1 and w,<1l. Next we define B,
(k=1,2,...,m) by
P+1
(1—w) By, =Z Wj iy -
s
B, satisfy the inequality

n P+1

n ‘ k
Dm= Nl
“— 1—w,

k=1 —j=1
j#s8
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This follows from

P+1
S’ w;
=1
b
hd 1 — W
i=1
#s

and from the induective supposition for m = p. Now

n D+1

DD w, ,k]— ((1—104) Bi+ w, ag)".
k=1 j=1

Since (1—w,)+w, =1, we conclude that

S <

which proves (3) for m = p+1.
n
LEMMA 2. If H>0 and H" > Z LH™ ", then H > x, where x is the

unique positive root of the equation (_1)
Proof. Let

P =9"— D P, y",
r=1

®(y) < 0 for 0 < y < 2 because x is the unique positive root of the equa-
tion (1) and ¢(0) < 0. Then from ¢(H) > 0 and H > 0 we have
H>z.

LEMMA 3. Let y,, be a positive root of the equation

m
y" = Z ¥,
r=1
and let y(n; kyy kyy ...y k,,) be the unique positive root of the equation

m
gt =Dy,
r=1
Wherel < ky < ky < ... < k,, < n. Then

Ym; kyy kgy ooy bp) < ym.

Proof. From the definition
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This implies

Zyn r

Since y,,>1 and »r <<k, (r =1,2,...,m), we can write

Y > Z yp k.

’!/(’n, kl’ k27 R km) < ym

The basic result of this paper is the following
THEOREM 1. If x; are positive roots of the equations

—1 2 . —2
" = a; " —l—ajzw'" +...4aj,

(ajl" 7am .7 _1 2 )’

From lemma 2 follows

then the positive root Z of the equation
n - S k n—k
= 2| Xau]=
k=1 j=1

<+ 2+...+2,.
Proof. From the equality

n

no___ k ,m—k
Ty = Zafkwi

k=1
n

k

ajk

—| =1.

P2

k=1 7

From lemma 1, with w; = «;/(#,+ .4 ...+x,) and

obtain
n m k
22w Bl
=
jé:_lJ o+ 2+...+@, &

k=1
Z—_ ’

satisfies the imequality

it follows that

ajk =

a,lr;, we
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Now applying lemma 2, we get

m
Z < Zw,-
j=1

which ends the proof of theorem 1.

3. Applications. One of the applications of theorem 1 is a new, very
simple proof of the following theorem of Westerfield:

THEOREM. Let x, be the unique positive root of the equation

n
mn=zpkwn_k (Pr=>0, k=1,2,...,n),
k=1
and lel positive quantities

k__
'/?k (k=1,2,...,n),
after being arranged im order of decreasing magnitudes, form a sequence

©W=q= e = Gn-

Then =z, satisfies the inequality

n
w0< Zq’-gr!
k=1
where
9 =Y, 9 =Yr—Yr (r=2,3,...,m),

and where vy, 18 the unique positive root of the equation
k
v =Dy (k=1,2,..,0).
r=1
Proof. Apply theorem 1 to the equations

7
2 = Y (g— g )R (§=1,2,...,n),
=1

Where numbers %, are such that

kKt
@ = Vpy,
and where ¢,,, = 0. We obtain
(4) %o < (g1 — @2)Y (15 koy) + (@2 — @a) Y (m5 By Ko) +- ...

coe (G — @)Y (M5 Byy Bgy ooy By y)+
+ 4,y (n; kyy Koy ..y k).
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Hence by lemma 3

2o < (¢1— @)Y+ (2—qa) Yot oo .+ (o1 — @) Yn1 F+ €Y =
= (1 + GLW—Y)+ -+ G Y= Yn) = €191+ 0202+ ..+ 0G0,y
and this completes the proof.

Proceeding on a similar way, we can prove a generalization of Wes-
terfield’s theorem. Let x, be the unique root of the equation (1), and let
Cyy C3y ...y C, be arbitrary positive numbers. We arrange the quantities

k
Verp, (k=1,2,...,m)
in order of decreasing magnitudes:

=202 ..o =Gy

Denote by y(n; R, R,, ..., R,) the positive root of the equation
y" = Zi Yy,
j=1 OR;

where 1< R, <...< R, <n. Let y, =maxy(n; R, R,,..., R,). We
shall prove the following Ej
THEOREM 2. For any system of n positive numbers Cry Cay evey Cp

n
a
Xy < Z q:9rs
r=1
where
91 = Y, 9 = Yr—Yr (r=2,3,...,n).
Proof. Apply theorem 1 to the equations

j

1 .

" = _(Qj—%'+1)kl$n-kl (1 =1,2,...,n),
1=1 Cry

where numbers %; (I =1,2,...,n) are such that

ky
q = '/%Pkl
and ¢,,, = 0. We obtain
Lo < (@1— )Y (5 ky) + (92— qs) Y (15 Foyy Koo) +-...
vt (@ — @)Y (05 Ky Koy ooy By 1)+ @Y (05 Kyy Koy ooy K)
< (=) Y1+ (@e—qa) Yot - - -+ (1 — € Y1+ €0 Yn
=Y+ GY—Y)+ . F GYn— Y1) = G911+ g2t -+ 40

which ends the proof of theorem 2.



Estimation of the roots of algebraic equations 201

In the special case ¢, =1 (r =1,2,...,n), we obtain the Wester-
field bound.

Theorem 2 suggests a question. Let W be the set of all equations (1)
with the root 1. Denote by F(c,, ¢y ..., ¢,: r) the bound resulting from
theorem 2 for fixed ¢,, ¢;, ..., ¢, and re W. Let

H(eyy Cayovvy€p) =8SUp Feyy Cay.eey Cp5 7).
reWw
Now the question is, for what system of ¢.(r =1,2,...,n) H(¢;, Csy ..., 0,)
is minimal. _

Another application of theorem 1 gives a lower bound for the unique
positive root of equation (1). Using the same notation as in Westerfield’s
theorem, we shall state the following

THEOREM 3.

) 3

Ty = G9ntr1—r-

r=

—

Proof. Let y be the positive root of equation

" = (¢, —p1)2" '+ (1 — l/172)2-’17n—2‘|‘ et (41'_‘/_?;)”-

Since ¢,¥, is the positive root of the equation

then, applying theorem 1, it is easy to see that

01 Yn S Tt Y.

From Westerfield’s theorem, we have

Y< (01— )9+ (€1—u_1)92F ...+ (©1—42) 9

= %Y 1— qugn«}-l—r'
r=2

Hence

0190 < Tot QuYno1— D, Gntior)
r=2

n n
Ty 2 qugn+1—r+ QI(yn—yn—l) = ZQrgn+l-r7
r=1

r=2

and so the theorem is proved.
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An example. Applying theorem 3 to the equation
a3 = 224+3x49
with the positive root # =3 we obtain
> 2,52.
By Westerfield’s theorem, applied to the equation

1 1 1
v e tytY
we have

¥ <09

Since 1/x =y, hence x> 1.11.
Now, we shall generalize theorem 3 in the same way as Westerfield’s

theorem.
GENERALIZATION OF THEOREM 3. Letx,, g,,q,andc,(r =1,2,...,n)
be defined as in theorem 2. Then

n
~ 2'
0= gn-i—l—r'

Proof. Denote by vy the positive root of the equation

Applying theorem 1, we get
QIyn < Lo + Y.

2 qr gn+1 —-r

ol

By theorem 2

hence
n n
G D (=8 Gns1-r S B0y D Gns1—r < T
r=2 r=1

In the proof of Westerfield’s theorem we have obtained the inequality

Ty < (§1— 42)Y (75 k1) + (qa— qa) Y (15 Foxy Ko) ...
F Q1= @) Y5 Ky y gy ooy by 1)+ @uy (05 kyy Koy .oy K

This bound is better, or at least not worse, than Westerfield’s bound.
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To ilustrate the use of inequality (4), we may apply it to the equation

(5) r® = x84 512x%+162°4 1680724422+ 1.
In this case we have

n =9, ¢ =8, g =17, qs = 2, =g =qs =1,

g7 = Qs = g9 = 0, k, =3, k, =25, ks =4, ky =9,

ks = 77 ks = 17
80 we get

@ < ¥(9; 3)4+5y(9; 3,5)+v(9; 3,5,4)+¥(9; 3,5,4,9,7,1).

Since
y(9;3) =1,
y(9; 3,5) < 1.21,
y(9; 3,5,4) < 1.33,
¥(9; 3,5,4,9,7,1) < 1.98,
then
2y < 10.36.
Applying Westerfield’s method we obtain
Ty < 13.
Actually we have
7, ~ 9.265.

To simplify the application of inequality (4), we provide the reader
with a table of the positive roots of the equations:

m
gt =Dy
r=1
for m =2,3,...,n and n = 2,3, ..., 10.

TABLE of the roots y(n;n—1,...,n—m+1)

n
\ 10 9 8 7 6 5 4 3 2
m

1.999 -

1.612 1.998

1.451 1.608 1.997

1.3556 1.444 1.602 1.992

1.286 1.343 1.432 1.5690 1.984

1.230 1.269 1.325 1.413 1.671 1.966

1.180 1.207 1.244 1.297 1.381 1.535 1.928

1.131  1.149 1.172 1.204 1.250 1.3256 1.466 1.840

1.076 1.086 1.097 1.113 1.135 1.168 1.220 1.3256 1.619

N WHE Ot I WO
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These roots may be used as upper bounds for the roots
Y(n; kyy Kgy onny bm) (n £ 10).
In fact, it is easy to see that
Y5 kyy gy ooy by) <y(s58,8—1,...,8—m+1),
where s = j+m—1 and j = min(k,, k,, ..., k,,).
An example. We apply it to the equation (5). Since
y(9;3) =1,
¥(9; 3,5) < y(4; 4,3) < 1.220,
y(9; 3,5,4) < y(5; 5,4,3) < 1.325,
¥(9; 3,5,4,9,7,1) < y(6; 6,5,4,3,2,1) < 1.984,
7, < 10.409.
The bound (4) for the positive root of equation
o = ¢, "+ T T+t g
where n <8 and ¢;> ¢, > ... > ¢,, i3
Xy < 0;+1.0976,+1.1720,+1.2446,41.3256,+ 1.43204+
+1.6028,41.9974,,
where 6, =¢,—q;,, (¢ =1,2,...,7) and 03 = ¢qs. For Westerfield’s
bound we obtain

Ty < 0;41.6198,1.8400,+ 1.9288,+ 1.9660, + 1.9848,+
11.9926,41.9974,.

then
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B. BOJANOV (Wroclaw)

SZACOWANIE PIERWIASTKOW ROWNAN ALGEBRAICZNYCH

STRESZCZENIE

Opisano metode szacowania z géry dodatniego pierwiastka réwnania (1) za
pomoca dodatnich pierwiastkéw réwnan tego samego typu (twierdzenie 1). Podano
nowy dowdd twierdzenia Westerfielda [1] i pewne jego uogdlnienie (twierdzenie 2).



Estimation of the roots of algebraic equations 205

Otrzymana nieré6wnosé (4) pozwala uzyskaé oszacowania lepsze, albo przy-
najmniej nie gorsze, niz oszacowanie Westerfielda. Uzyskano réwniez oszacowanie
z dolu dodatniego pierwiastka réwnania (1).

B. FOSHOB (Bponnas)
OB OLIEHKE KOPHEN AJITEBPAMYECKUNX YPABHEHHI

PE3IOME

B paboTe omucaH MeTOHd OLEHKH CBEPXY MOJIOXHUTEILHOro KOpHA ypaBHeHEs (1) ¢ moMompbro
MONTOXKHTENbHbIX KOpHEM ypaBHeHMit Toro e Buaa (TeopeMa 1). JlaeTcsi HOBOE MOKA3aTEILCTBO
Teopems! Bectepdpunga [1] u-ee o606wenne (teopema 2). Y3 nonydenHoro HepaseHcTBa (4) BHI-
TeKaloT OLEHKH KOpHel, KOTOophle Jyyllie MM N0 KpaiiHell Mepe He Xyxe oueHOK Becrepdmina,
ITonyyena Takx € OLEHKA CHH3Y IOJIOXKHMTEIBHOTrO KOpHs ypaBrenms (1).



