UNITARY MULTIPLIERS ON $L^2(G)$

RY

TADEUSZ PYTLIK (WROCŁAW)

Let G be a locally compact group with left invariant Haar measure. A bounded operator on E(G), $1 \le p < \infty$, is called a multiplier if it commutes with all left translations. The algebra of all multipliers on E(G) is denoted by $CV^p(G)$. In general, the characterization of $CV^p(G)$ seems to be a very difficult problem (except for the case p=1 in which $CV^p(G)=M(G)$) and is far from being solved, although there are many partial results. Let us recall some of them: Herz [4], Theorem C, shows that if G is an amenable group and $p \le q \le 2$ or $p \ge q \ge 2$, then $CV^p(G) \subset CV^q(G)$ with contraction of the norm. It follows that the algebra $CV^2(G)$ is the largest one. In [5] Kunze and Stein show that for the group $G = SL(2, \mathbb{R})$ any function in E(G), $1 \le p < 2$, defines a multiplier on $L^2(G)$ by convolution on the right. A functional characterization of $CV^p(G)$ for amenable groups may be found in [3], [8], and [2].

Using Lamperti's characterization of isometries on E-spaces $(p \neq 2)$, Parrott [7] and Strichartz [9] proved independently in 1968 that the only isometric multipliers on E(G), $p \neq 2$, are scalar multiples of right translations. Of course, this is not the case for p = 2.

The aim of this paper is to give a method of decomposition of any unitary multiplier on $L^2(G)$ into the product of a right translation operator and a unitary multiplier of a simple form. To do this we introduce the notion of induced multipliers and give a characterization of them.

Let G be a locally compact group which is countable at infinity and let H be a closed subgroup of G. Fix a rho-function ϱ on G and denote by μ the quasi-invariant measure on G/H associated with ϱ (cf. [1], VII, § 2, or [10], Appendix 1). For a multiplier $T \in CV^p(H)$ let us define an operator T on $L^p(G)$ by

$$\langle \tilde{T}f, g \rangle = \int_{G/H} \left(\int_{H} T(x f \cdot x \varrho^{-1/p}) (h) \overline{g(h)} \cdot x \varrho^{-1/q} (h) dh \right) d\mu(\dot{x}),$$

where $f \in \mathcal{E}(G)$, $g \in \mathcal{E}(G)$, 1/p + 1/q = 1, and $_x f(y) = f(xy)$. Then \tilde{T} is a multiplier on $\mathcal{E}(G)$ and the map $CV^p(H) \ni T \to \tilde{T} \in CV^p(G)$ is an isometric and

isomorphic embedding of $CV^p(H)$ into $CV^p(G)$. The multiplier \tilde{T} will be called the *induced multiplier* of T on E(G) and denoted by $\operatorname{Ind}_H^G T$. One can easily show that if $T \in CV^p(G)$ and T^* denotes its conjugate operator acting on E(G), where 1/p+1/q=1, then $T^* \in CV^q(G)$ and $\operatorname{Ind}_H^G T^*=(\operatorname{Ind}_H^G T)^*$. In particular, if $T \in CV^2(H)$ and T is hermitian (resp. unitary), then $\operatorname{Ind}_H^G T$ is also hermitian (resp. unitary).

For a function φ in $L^{\infty}(G)$ let M_{φ} denote the operator on $\mathcal{E}(G)$ defined by $M_{\varphi} f = \varphi f$, $f \in \mathcal{E}(G)$. Moreover, let $L^{\infty}(G/H)$ denote the set of all $L^{\infty}(G)$ -functions which are constant on right cosets modulo H.

PROPOSITION. Let G be a locally compact group, countable at infinity, and let H be a closed subgroup of G. A multiplier $S \in CV^p(G)$ is of the form $\operatorname{Ind}_H^G T$ for a $T \in CV^p(H)$ if and only if S commutes with all operators M_{φ} , $\varphi \in L^{\infty}(G/H)$.

Proof. Since every multiplier $\operatorname{Ind}_H^G T$, $T \in CV^p(G)$, commutes (by the definition) with all operators M_{φ} , $\varphi \in L^{\infty}(G/H)$, only the converse implication must be shown. Assume S is in $CV^p(G)$ and commutes with all M_{φ} , $\varphi \in L^{\infty}(G/H)$. Let s be a Borel section of G fibered by H (cf. [10], p. 374-375) and normalized so that s(1) = 1. Let t be a function from G to H, defined by $t(x) = s(x)^{-1}x$. For any continuous function f on H with compact support, any Borel subset E in G/H such that $\mu(E) < \infty$, and for $x \in G$ define functions $\Phi_{f,E}$ and $\Psi_{f,E}$ on G by

$$\Phi_{f,E}(x) = \varrho^{-1/p}(x) f(t(x)) \mathbf{1}_{E}(x),$$

$$\Psi_{f,E}(x) = \varrho^{-1/q}(x) f(t(x)) \mathbf{1}_{E}(x),$$

where I_E is the characteristic function of E. We have

$$\Phi_{f,E} \in \mathcal{E}(G)$$
 and $\|\Phi_{f,E}\|_{L^{p}(G)} = \|f\|_{L^{p}(H)} \mu(E)^{1/p}$

and also

$$\Psi_{f,E} \in L^q(G)$$
 and $\|\Psi_{f,E}\|_{L^q(G)} = \|f\|_{L^q(H)} \mu(E)^{1/q}$.

If T is a multiplier on E(H) and \tilde{T} denotes the corresponding induced multiplier on E(G), then

(1)
$$\langle \tilde{T}\Phi_{f,E_1}, \Psi_{g,E_2} \rangle = \mu(E_1 \cap E_2) \langle Tf, g \rangle.$$

Fix a Borel set E_0 in G/H such that $0 < \mu(E_0) < \infty$. For f in E(H) and g in E(H) the correspondence

$$(f, g) \rightarrow \langle S\Phi_{f,E_0}, \Psi_{g,E_0} \rangle$$

is a continuous bilinear form. Thus there exists a bounded operator T on E(H) such that

$$\langle Tf, g \rangle = \mu(E_0)^{-1} \langle S\Phi_{f,E_0}, \Psi_{g,E_0} \rangle, \quad f \in L^p(H), g \in L^p(H).$$

In fact, T is a multiplier on E(H) and we will show that $S = \operatorname{Ind}_H^G T$. The main point of the proof is to show that the definition of the operator T does not depend on the set E_0 . To see this, fix an f in E(H) and g in E(H) and define a set function v on Borel subsets (of finite measure) in G/H by

$$\nu(E) = \langle S\Phi_{f,E}, \Psi_{g,E} \rangle.$$

For two such sets E_1 , E_2 the functions φ_1 , φ_2 defined on G by $\varphi_i(x) = 1$ if $\dot{x} \in E_i$ and $\varphi_i(x) = 0$ otherwise, i = 1, 2, are constant on right cosets modulo H. Thus

(2)
$$\langle S\Phi_{f,E_1}, \Psi_{g,E_2} \rangle = \langle S(\varphi_1 \cdot \Phi_{f,E_1}), \varphi_2 \cdot \Psi_{g,E_2} \rangle$$

= $\langle M_{\varphi_1 \varphi_2} S\Phi_{f,E_1}, \Psi_{g,E_2} \rangle = \langle S\Phi_{f,E_1 \cap E_2}, \Psi_{g,E_1 \cap E_2} \rangle = \nu(E_1 \cap E_2).$

In particular, if $E_1 \cap E_2 = \emptyset$, then $v(E_1 \cup E_2) = v(E_1) + v(E_2)$, and so v is an additive set function. A routine computation shows that v is then countably additive. Moreover, since the operator S commutes with left translations and the measure μ is quasi-invariant, v is also quasi-invariant. Therefore, v is a multiple of μ , and so

$$v(E) = \frac{\mu(E)}{\mu(E_0)} \langle Tf, g \rangle.$$

Now, for any E_1 , E_2 by (1) and (2) we get

$$\langle S\Phi_{f,E_1}, \Psi_{g,E_2} \rangle = \frac{\mu(E_1 \cap E_2)}{\mu(E_0)} \langle Tf, g \rangle = \langle \tilde{T}\Phi_{f,E_1}, \Psi_{g,E_2} \rangle,$$

and since the functions of the form $\Phi_{f,E}$ and $\Psi_{g,E}$ $(f \in E(H), g \in E(H), and E$ is a Borel subset in G/H of finite measure) constitute a linearly dense subset in E(G) and E(G), respectively, we have $S = \tilde{T}$.

Now we restrict our attention to unitary multipliers on $L^2(G)$. The simplest examples of such operators are right translations or, more precisely, operators R_t , $t \in G$, on $L^2(G)$ of the form

$$(R_t \varphi)(s) = \Delta^{-1/2}(t) \varphi(st), \quad \varphi \in L^2(G).$$

Another class is formed by multipliers which are induced from unitary multipliers on closed subgroups. We may also compose operators of these two kinds.

THEOREM. Let G be a locally compact group which is countable at infinity and let U be a unitary multiplier in $CV^2(G)$. Let $\mathscr A$ be the set of all functions f in $L^\infty(G)$ such that there exists an L(f) in $L^\infty(G)$ satisfying the equality $U(f\varphi) = L(f)U\varphi$ for all φ in $L^2(G)$. Then

(a) there is a uniquely determined closed subgroup H in G such that $\mathcal{A} = L^{\infty}(G/H)$;

- (b) there is a $t \in G$ such that L(f)(s) = f(st) for all $f \in \mathcal{A}$ (so that L is a right translation);
- (c) there is a unitary multiplier $V \in CV^2(H)$ such that the multiplier U has a decomposition

$$(3) U = R_t \operatorname{Ind}_H^G V.$$

Proof. By assumption, U is a unitary operator on $L^2(G)$. It follows that if an L(f) exists, then it is unique and the map $f \to L(f)$ is an isometry. One can easily show that $\mathscr A$ is then a *-subalgebra in $L^\infty(G)$ and L is a *-homomorphism of $\mathscr A$ into $L^\infty(G)$.

Since the *-weak topology for functions f in $L^{\infty}(G)$ and the weak operator topology for the corresponding operators M_f on $L^2(G)$ coincide, the subalgebra $\mathscr A$ is *-weakly closed in $L^{\infty}(G)$ and L is *-weakly continuous.

Now, since U is a multiplier, L commutes with left translations, and so \mathscr{A} is left translation invariant.

The specified properties of \mathscr{A} together with a result of [6] imply that $\mathscr{A} = L^{\infty}(G/H)$ for a closed subgroup H, and thus (a) is proved.

To prove (b) observe that

$$L^1(G) * C_0(G/H) = C_0(G/H)$$
 and $L^1(G) * L^{\infty}(G) \subset C(G)$.

Since L is *-weakly continuous and commutes with left translations, it commutes with left convolutions by $L^1(G)$ -functions. Thus $f \in C_0(G/H)$ implies $L(f) \in C(G)$. The map

$$C_0(G/H) \ni f \to L(f) (e) \in C$$

is then well defined and determines a non-trivial, continuous, linear and multiplicative functional on $C_0(G/H)$. But then there exists a $t \in G$ such that L(f)(e) = f(t), and since L commutes with left translations, we have also

(4)
$$L(f)(s) = f(st), \quad f \in C_0(G/H), \ s \in G.$$

Observe that the right translation by t and L are both *-weakly continuous operators on $L^{\infty}(G/H)$ and by (4) they coincide on $C_0(G/H)$. But $C_0(G/H)$ is *-weakly dense in $L^{\infty}(G/H)$, so (4) holds for all f in $L^{\infty}(G/H)$ and (b) is proved.

Using (a) and (b) we see easily that the unitary multiplier $R_{t-1}U$ commutes with all multiplications by $L^{\infty}(G/H)$ -functions. Thus, by the Proposition, $R_{t-1}U$ is of the form $\operatorname{Ind}_H^G V$ for a unitary multiplier V in $CV^2(H)$, which gives (c).

COROLLARY. Let U be a unitary multiplier on $L^2(\mathbf{R})$, \mathbf{R} being the additive group of the real line. If there exist non-zero functions f_1 , f_2 in $L^{\infty}(\mathbf{R})$ such that $U(f_1 \cdot \varphi) = f_2 \cdot U\varphi$ for all φ in $L^2(\mathbf{R})$, then U is a convolution by a discrete,

locally bounded measure with support contained in an arithmetic progression in R.

Proof. Since f_1 is non-constant, the subgroup H in (a) is proper, and so $H = \alpha Z$ for an $\alpha \in \mathbb{R}$. By (c) the multiplier U is of the form $R_t \operatorname{Ind}_{\alpha Z}^{R_V}$, where V is a multiplier on the discrete group αZ . Thus V is a convolution by a locally bounded measure μ (say) on αZ , and so U is a convolution by its translation $R_t \mu$.

REFERENCES

- [1] N. Bourbaki, Eléments de mathématique, Livre VI. Intégration, Hermann, 1963.
- [2] P. Eymard, Algèbres A_p et convoluteurs de E, Séminaire Bourbaki, Vol. 69/70, p. 55-72 in: Lecture Notes in Mathematics 180, Berlin 1971.
- [3] A. Figà-Talamanca, Translation invariant operators in E, Duke Mathematical Journal 32 (1965), p. 495-502.
- [4] C. Herz, The theory of p-spaces with an application to convolution operators, Transactions of the American Mathematical Society 154 (1971), p. 69-82.
- [5] R. A. Kunze and E. M. Stein, Uniformly bounded representations and harmonic analysis of the 2×2 real unimodular group, American Journal of Mathematics 82 (1960), p. 1-62.
- [6] V. Losert, ω^* -closed subalgebras of $L^{\infty}(G)$, Colloquium Mathematicum 46 (1982), p. 279 281.
- [7] S. K. Parrott, Isometric multipliers, Pacific Journal of Mathematics 25 (1968), p. 159-166.
- [8] M. A. Rieffel, Multipliers and tensor products of E-spaces of locally compact groups, Studia Mathematica 33 (1969), p. 71-82.
- [9] R. S. Strichartz, *Isomorphism of group algebras*, Proceedings of the American Mathematical Society 17 (1968), p. 858-862.
- [10] G. Warner, Harmonic analysis on semi-simple Lie groups. I, Berlin Heidelberg New York 1972.

INSTITUTE OF MATHEMATICS WROCŁAW UNIVERSITY

Reçu par la Rédaction le 2. 10. 1980