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1. Introduction. The problem of determining for a fixed but arbi-
trary set 4 which transformation monoids on 4 can equal End?¥ for
a suitably chosen algebraic structure W over A has received attention
from several investigators (e.g. [1], [3] and [6]). A successful solution
for the corresponding problem for automorphisms was given by Jdénsson
in [2]. Since the problem is trivial for |4| < 2, we assume throughout that
|A] > 3. The purpose of this note is to provide a characterization for
a certain class of semigroups which generalizes a result announced by
Griatzer and Lampe in [1] and [3], and to present some work on the
general problem.

2. Background and definitions. By a monoid we mean a semigroup
with identity. A transformation monoid M < A< is said to be algebraic if
M = EndU, where A = (A4, F) is a universal algebra (!). For M to be
algebraic it is necessary, in general, that M satisfy a “local” closure prop-
erty [2] and that certain “constants of M” be included in M [3]. If M
has a special structure, these conditions may also be sufficient; if, for
exalmple, M consists of a group ¢ and a set of constant maps K, the above-
-given conditions are necessary and sufficient [3]. Our Theorem 1 is & more
general result of this kind.

K is used throughout to denote a set of constant maps.

We say that » monoid E < A4 is locally invertible provided

V VY ((o(e) =) = HEq)(a) = b)).

neo a,bedm™ o,1¢E

Note that in a locally invertible monoid E each map is one-to-one.
Indeed, given #,ye¢ A and oe¢ E with o(x) = o(y), we have o({z, x))
= a({(®, ¥>); hence ¢({z, x)) = {(x,y) for.some gpe E, so that z =y. In

(*) Here a universal algebra means each operation has finite rank.
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case A is finite, a locally invertible monoid is a group. Every group is
a locally invertible monoid.
Every algebraic monoid satisfies the following local closure condition
(see [2] and [3]):
VIV 3 ol X=¢[ X) :>q7€M).

ped4d V' X finite cA oceM

The set of constants of any algebraic monoid M must include the set
(see [3])

C(M) = {(peAA] p(4) = {a,}&( V 3 (o(a) = 7(a) & o(b) # r(b)))}.

As3b#a o,teM

3. Characterization of certain algebraic monoids.

THEOREM 1. Let E be locally invertible and K a set of constant maps.
Then a monoid M = EVK ts algebraic iff C(M) < M and M is locally
closed.

Proof. The necessity of the conditions is obvious.

To prove the converse, assume that C(M) < M and M is locally closed.
Let A = (A4, F) be the algebra of all (finitary) operations substitutive
over M. Clearly, M < End?. The proof of the converse inclusion will be
carried out in three steps.

Step I. If pe End¥, then ¢ is one-to-one or constant.

To see this, suppose ¢ is neither one-to-one nor constant. Then ¢¢ M,
so there exists a finite set X < A with o[ X # ¢ X for any oe M, and
|X] = n > 2. We shall prove that ¢ must be constant on X. To this end,
fix a one-to-one sequence y with range X and define an n-ary operation
f as follows:

29 1f 2 = oy for some oe K,

(i) f(z) =

2z, otherwise.

Note that fe F, since it has the substitution property for M; that
is, af(2) = f(a(2)) for any ae E and ze A" Indeed, if 2 = o(y) for some
oe E, then a(2) = ao(y), so that af(2) = a(2,) = f(a(2)). On the other
hand, if z # o(y) for any o< E, then, inasmuch as E is locally invertible
and a(?2) = o(y) implies z = £(y) for some &e E, we have a(z) # n(y)
provided ne E. Therefore, af(z) = a(2,) = f(az). Likewise, if ae¢ K, then
af (2) = a = f(az), where {a} = a(A). Now, if a,be X and y = (a, b, ...),
then ¢(a) = ¢f (y) = f(py) = @(b). Thus ¢ is constant on X. Let ¢(x) = a
for z¢ X. Since no member of M agrees with ¢ on X, the constant map
v : A — {a} is not a member of M. Let g be some n-ary operation for which
a #ga,...,a). If p were constant on 87 (X), where S?,‘(X) denotes the
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subalgebra of A generated by X, then

PG (Xgy -ovy Xg) = PG(Xgy oy Ty) = & = G(QTyy ..., pXy) = g(a, ..., @),

a contradiction. So there exists a be S} (X) with ¢(b) # a.
Again, let ye A™ be a one-to-one sequence with range X, and let
y = (a, b, ...). Define an n-ary operation f, as follows:

a(b) if 2 = o(y) for some ce E,

fo(2) =

2 otherwise.

Note that f, is well defined, since o, 7¢ F agree on Sf,‘(X ) if they agree
on X. It is routine to verify that fe F'; that is, af,(2) = f,(a2) for any ae E
and ze A. Indeed, if z = o(y) for some oe E, then a(z) = ao(y), so that
afy(2) = ao(b) = f,(az). On the other hand, if 2z # o(y) for any oe E,
then, by the local invertibility of E, we have a(z) # n(y) provided 7e E.
Therefore, af,(2) = a(z,) = f,(a(2)). Further, if ae K and a(z) = d for
xre A, then we have af,(2) =d and f,(az) = fy(d, ..., d). Now (d, ..., d)
# oy for some oe ¥ since each o is one-to-one, ¥ is one-to-one and ye A™,
where n >1. Thus f,(az)=d = af,(z). But now a = @(y,) = fp(ey) = ¢(b),
a contradiction. This completes the proof of Step I.

To establish Steps II and III we shall use the methods and operations
introduced by Jonsson [2].

Step IL. If ¢« EndU is one-to-one, then ge M.

If p¢ M, then there exists a finite set X =< A with o[X #¢[ X for
any oce M. Let ye A™ be a one-to-one sequence with range X and let f
be defined by (i). The local invertibility of E shows that fe F. But ¢(y,)
= ¢f (y) = f(py) = @y, and, on the other hand, y, # y,. Since ¢ is one-to-
-one, ¢(¥,) # @(¥,), & contradiction. So we must have pe M.

Step IIL. If pe EndW is constant, then pe M.

Suppose ¢(x) = 0 for ve A. If ¢ M, then ¢¢ C(M). Thus there is
somebe A,b s~ a,suchthat o(b) = 7(b) whenever o, ve M and o(a) = v(a).
Define a unary operation f, ,, as follows:

cb if 2 = oa for some ce E,

f(a,b) (z) =

2 otherwise.

Using the same argument as in the proof of Step I, we get fi, ;¢ F.
But now a = @f a4, (#) = feapy (p(@)) = b, a contradiction. So we must
have pe M. This completes the proof of Theorem 1.

It is easy to see that certain monoids are algebraic by means of this
theorem. For example, we have
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COROLLARY 1. The monoid of all one-to-one maps and all constant
maps on a given set is algebraic.

Lampe’s characterization of algebraic mwonoids of the form GUK,
where G is a group (see [3]), also is a corollary to Theorem 1. Algebraic
monoids of the form GUK U {¢}, where @ is a group and ¢ is arbitrary,
are characterized in [7]. It is shown there that the local closure plus the
inclusion of sufficiently many constant maps is both necessary and suf-
ficient. A generalization of Theorem 1 replaces the local closure by the
m-local closure after the manner of Plonka [5] to characterize those monoids
of the form KUK, where FE is locally invertible, which equal End¥ for
some algebra with at most m-ary operations; again the m-local closure
together with the inclusion of constants is both necessary and sufficient [7].

. 4. Remarks on the general problem. It is worth-while to observe that
the local closure together with the inclusion of enough constant maps is
not, in general, necessary and sufficient for M to be algebraic. The fol-
lowing result shows that it is sometimes necessary to include many non-
-constant maps to make a given monoid algebraic:

THEOREM 2. Let the kernels of M exhaust all non-trivial partitions on
A and let M include two constant maps. Then M is algebraic iff M = A4,

Proof. A4 is obviously algebraic. Conversely, let M — End%, where
A = (A, F). Since the kernels of M exhaust all non-trivial partitions on
A, every equivalence relation on A is a congruence. Hence N (with |4| > 3)
can have as operations only constant operators and projections (cf. [4],
Exercise 2, p. 38). In fact, no fe F is a constant operation, since no element
of A is fixed under all endomorphisms (this could also be insured by some
explicit assumption on M other than the inclusion of two constant maps).
Thus F consists entirely of projections and every map is an endomorphism,
$s0 M = A“. This completes the proof of Theorem 2.

Theorem 2 enables one to produce easily a variety of non-algebraic
monoids; we obtain, for example (for |A| > 3), ,

COROLLARY 2. For any different a, be A the monoid consisting of the
identity together with all constant maps and all maps into {a, b} is not algebraic.

If A is finite, the monoids in Corollary 2 are locally closed and include
all constant maps, but fail to be algebraic.

The interrelation of subsets of A and the structure of M can be ex-
plored further to yield a sufficient condition for M to be algebraic. We say
that a subset B = A is M-independent if, for each one-to-one sequence
be B" and each sequence de A", there exists a e M with ¢(b) = d. A sub-
set B< A M-spans A provided, for any o, ve M, the equality [ B=17[B
implies ¢ = 7. An M-basis for A is an M-independent set which M-spans A.
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THEOREM 3. If A has a finite M-basis, then M is algebraic.

Proof. Let A = (A, F) be the algebra of all operations substitutive
over M. Then M < Endq. Suppose B is a (finite) M-basis for A, say
|B| = n. For each one-to-one sequence be B" and a¢ A define an n-ary
operation f; as follows: )

fo(X) = fy(o(b)) = o(a), where ce M and X = o(b).
Note that f; is well defined, since B spans A. Moreover, f; ¢ F, since

T(f8 (X)) = vo(a) = fg(vo (b)) = fi (v(X)) for reM.

Fix pe End¥. Since B is M-independent, there exists a oe M with
o[B = ¢[B. In fact,

p(a) = ¢fg(b) = f5(#b) = f5(o(b)) = o(a) for acA.
Thus ¢ = o, so that pe M. Hence M = End¥.
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