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FACTORIZATION THEOREMS FOR EXTENSIONS OF MAPS

BY

W. KULPA (KATOWICE)

Let f: M — Y be a continuous map from a closed subspace M of
a normal space X into a metric space Y of weight less than or equal to 7.
In this note there are given some sufficient conditions for the existence
of continuous maps h: X —-Z, and g: M, —» Y such that f(z) = gh(x)
for each # € M, where M, is & closed subspace of a metric space Z, of weight
less than or equal to .

1. Preliminaries. Maps considered in this note are assumed to be
(uniformly) continuous. We use the notion of uniformity in the covering
sense. Some symbols and notation are taken from [56] and [6].

If X is a completely regular space, then by %% we denote the greatest
uniformity inducing the topology of the space X. A family  « 4% which
satisfies all axioms of uniformity except for the axiom of separation is
said to be a pseudouniformity. Symbols P > @ and P >, @ mean that P
is a refinement and a star-refinement, respectively.

For each pseudouniformity  put dw# < (y, 7) if there exists a base
% < U with card® < y, consisting of locally finite coverings of cardinality
less than or equal to 7 (we assume that y and v are infinite).

A subspace M < X is said to be a u(7)-subspace of X if for each locally
finite open in M covering P e %3, with cardP < r there exists a locally
finite open covering Q € #% with cardQ < v such that Q|M = {unM:
u € @} is a refinement of P.

2. Factorization theorems.

THEOREM 1. Let f: M« Y be a map of a u(v)-subspace of a completely
regular space X into a completely regqular space Y, the topology of which is
induced by a complete uniformity ¥~ with dw¥” < (y, v). Then there exist
maps h: X —Z; and g: M; -~ Y such that

1. gh(x) = f(x) for each xz e M;

2. M, c Z; 18 a closed subspace of a space Z,, the topology of which is
induced by a complete uniformity ¥, with dAw¥ ;< (y, 7).
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Proof. A map f: (M, %3) — (¥, ¥") is uniform. Let # = ¥ be a base
with card# < y, cansisting of locally finite open coverings of cardinality
less than or equal to 7. Since M is a «(r)-subspace, we can choose by a
countable operation (see Proposition 3 in [5]) a pseudouniformity  c #%
with dw# < (y, v) and such that f~'¥ < #|M.

Put

Xy = {[#ly: € X}, where [2]y =) {st(z,P): Peu}.

The set Xg4 is a partition of X into sets [z]y, 2 € X. Put h: X — X,,
@ > [2]g, and define the uniformity #* on X, by

¥ = {P¥: Pe%}; where P¥ = {X,—h(X—u): ueP}.

The map h: (X, %) - (Xq, #*) is uniform. Since A~ '%¥* = # and
f~'v = %|M, there cxists a uniform map §: (h(M), ¥ |h(M)) - (X, 7")
such that g[z]y = f(@).

Let (Z;, ¥;) be a completion of the space (X4, #¥). Then (M, ¥ ;| M),
where M, = cl; h(M) is a completion of the space (h(M),%*|h(M)).
Since the space (Y, ¥") is complete, the unique uniform extension g:
(M,,v;) - (Y,¥) of the map g exists. Thus gh(x) = f(x) for cach z € M,
M, is a closed subspace of Z,, and dw ¥, < (y, 7).

THEOREM 2. Let f: M — Y be a map of a u(r)-subspace of a completely
reqular space X into -a completely regular space Y, the topology of which is
induced by a uniformity ¥ with Aw ¥ < (y, ©). If M has a complete pseudo-
uniformity U’ < Uy with AW’ < (y, v), then there ewist maps h: X - Z,
and g: M, — Y such that

1. gh(x) = f(x) for each x € M;

2. M,c Z; i3 a closed subset of a space Z;, the topology of which is
induced by a uniformity ¥, with Aw ¥, < (y, 7).

Proof. A map (M, %3) — (¥, ¥) is uniform. Since M < X is u(z)-
subspace, we can choose by a countable operation a pseudouniformity
U c ¥ with dw# < (y, v) and such that f~'¥'U#% < #|M. As in the
previous proof, put X, = {[#ls: 2 € X} and Z, = X, with the topology
induced by the uniformity

¥, = 4% = {(P¥: Pe%}, where P¥ = {Z,—h(X—u): ueP}.
The map h: (X, ¥) — (Z;, ),  — [x]y, i8 uniform. Define
g: (h(-M)y %#’h(M)) - (Y, 7)

by glzley = f(x) for each x € M. Put M, = h(M) « Z;. We have gh(x)
= f(«) for each x € M and dw 7, < (y, 7). We show that the set M, c Z,
is closed. The pseudouniformity #|M is complete, since #' < # 1. Sup-
pose that there exists a point z € clth( M)—h(M). A family

(st (z, Q)N M: Q € 2%} = {st(w, P)NM: Pe¥}, xzeh '(2),
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is a Cauchy filter in the complete pseudouniform space (M, #|M). And
since P’ >, P implies {clu: u € P'} > P, there exists a point

y € N {cyst(z, P)nM: P e @} = () {st(z, P)nM: P e #}.

Thus k(y) =2, y € M, a contradiction with z ¢ h(M).

THEOREM 3. Let f: M — Y be a map of a u(r)-subspace, closed and
9, in a normal space X, into completely reqular space X, the topology of
which ts induced by a uniformity ¥ with Adw¥" < (y, ). Then there exist
maps h: X —~Z; and g: M, —> Y such that

1. gh(x) = f(x) for each x € M;

2. M, Z, is a closed subset of a space Z,, the topology of which i3
induced by a uniformity ¥, with dw¥ ;< (y, v) and h~'M, = M.

Proof. Let M = () {@: G € 4}, where ¥ with card ¥ < y is a family
of open sets. Since X is a normal space,

Uy = |{@, X—M}: G e 9} c ux.

By a countable operation we can find a pseudouniformity % < %
with dw# < (p, ) and such that %, < # and f~'v" < %|M. Put Z,
= X, with topology induced by the uniformity %, h(z) = [#]; for
z e X, g[vly = f(x) for x € M, M, = h(M). To see that M, = Z,is a closed
subspace, consider x € M. There exists a G € 4 such that z ¢@. Let P
= {@, X —M}, 2z =h(z). Then st(z, P*)nh(M) = D. Since P¥*e #¥,
h(z) ¢clth(M ). This implies

MX—I)Nh(M) =0 and  clyh(M) = h(M).

A space X is said to be y-feathered if there cxists a family 2, card 2
< y, of coverings of X with open sets in the Cech-Stone compactification
BX such that, for each z e X,

N {st(z,P): Pec#?} < X.

In the case y =N, the space X is called feathered or a p-space.

THEOREM 4. Let f: M — Y be a map from a closed subspace M of
a y-feathered paracompact space X into a completely reqular space Y, the
topology of which is induced by o uniformity ¥ with dw¥" < (y, ). Then
there exist maps h: X —Z, and g: M, > Y such that

1. gh(z) = f(z) for each x € M,

2. h: X - 2Z, is a perfect map into a paracompact space Z,, the to-
pology of which is induced by a uniformity ¥, with Aw¥ ;< (y, 7).

Proof. Let # with card 2 < y be a family of coverings of X open
in X and such that, for each z € X,

N {st(z,P): Pe?} c X.
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Since X is paracompact, #|X c #%. For each P €% there exists
a locally finite open covering @ € #% such that @ > P, where

Q={:veQ}, T=clgl)J{uc=pX: unX cv, uis open in X}.

Hence, by the compactness of $X, the family {st(z,P): Pe%} is a
base of neighbourhoods of [#]g, and [z] is compact for each x € X, where
% < U% is a pseudouniformity with dw# < (y, t) and such that 2| X < #,
7' <c@|M. Thus h: X -Z, = X,, x+>[zly, I8 a perfect map.
Put g[x]e = f(«) for each x € M. The topology of the space Z, is induced
by the uniformity #¥* =¥, with dw#* = dw# < (y, v). By a theorem
of Michael the space Z, is paracompact.

3. Some remarks. Each metrizable space Y of weight less than or
equal to 7 has a uniformity ¥" with dw¥" < (NX,, ) which induces the to-
pology and, conversely, if dw¥" < (N,, r), then the uniformity ¥~ induces
on Y a metrizable topology of weight less than or equal to v. Thus in the
case (N,, ) the factorization theorems give some answer to the question
when for each map f: M — Y from a closed subspace of a normal space X
into a metrizable space Y of weight less than or equal to r there exist
a closed subspace M, < Z, of a metrizable space Z, with weight less than
or equal to v and maps h: X —Z;, g: M; - Y such that the diagram

X—t—z
v AM U
(%) M"Y,

\ /

Theorems 1-3 show that if M is a closed %(7)-subspace of a normal
space X and Y is complete metric (Theorem 1) or if M is complete in the
Cech sense (Theorem 2) or if M is %, (Theorem 3), then diagram (*) is
satisfied. If X is a p-paracompact space, then diagram () is satisfied for
each closed sct M < X (Theorem 4).

Now let us try to explain for which classes of spaces X each closed
subsct M < X is a wu(7r)-subspace. For example, if X is collectionwise
normal, then each closed subset M < X is a u(v)-subspace for each 7.
If X is r-collectionwise normal, then each closed subset M < X is a u(z)-
subspace ([4], see also [10]). Since each normal space X is N,-collection-
wise normal [8], cach closed set M < X is a u(N,)-subspace of X.

Theorem 1 yields the following characterization of collectionwise
normal spaces.

THEOREM 5. A space X is collectionwise mormal if and only if, for
each map f: M — Y of an arbitrary closed subset M — X into a complete
melric space Y, there exist maps h: X —Z, and g: M, — Y such that
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1. gh(z) = f(x) for each v € M;
2. M, < Z, is a closed subset of a complete melric space Z; and

weight Z, <N, + weight ¥ .

By similar theorems one can characterize normal spaces (then Y
and Z, are Polish spaces), r-collectionwise normal spaces (then Y and Z,
are complete metric spaces of weight less than or equal to ), and p-para-
compact spaces (then » is a perfect map).

Now consider some applications of the factorization theorems. Note.
that if for a map f: M - ¥, M c X, into a metric space the diagram ()
commutes, then f has an extension over some ¥, closed subset M < X
(see [2]).

If a metric space of weight less than or equal to v is an AE-space
for a class of metric spaces of weight less than or equal to z, then Y is an
AE-space for the class of spaces for which diagram (=) is satisfied. Consider
factorization theorems of this kind:

Let h: X — XY be a map into a melric space Y, weight Y < 7, and let X
have a property (c) (for example, Aim X < n; see [9], [12], [1], [7], [13], [3])-
Then there exist maps hy: X —Z amd hy: Z — Y such that h = hyh,, the
space Z is metrizable with weight less than or equal to 7, and Z has the
property (c).

Applying this theorem, one can obtain some stronger versions of
Theorems 1-4 in which the space Z, has some additional properties, the
same as the space X has. For example, Pasynkov has proved the fol-
lowing:

For each map h: X — Y of completely reqular space X, dimX < n
into a metric space Y, weight Y < =, there exist maps h,: X —~Z and h,:
Z — Y such that h = hyh,, Z i3 a metrizable space of weight less than or
equal to v and dimZ < n.

Applying the theorem of Pasynkov to Theorem 1 for y = N,, we can
obtain the following corollary:

If f: M - Y 48 & map from a closed subspace M of a z-collectionwise:
normal space X, dimX < n, into a complete metric space ¥, weight ¥ < 7,
then there exist maps h: X >Z and §: M - Y such that (@) = gh(z)
for each v € M, M is a closed subset of a meiric space Z, diimZ < n and
weightZ < 7.

Indeed, it follows from Theorem 1 that there exist maps 4: X — Z,
and g: M,— Y such that gh(z) = f(») for each v e M, and M, Z,
is a closed subspace of a metrizable space Z, of weight less than or equal
to 7. By Pasynkov’s theorem, there exist maps h,: X —Z and hy,: Z — Z,
such that

h = hhy, dimZ<dimX, weightZ < weightZ,
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and Z is metrizable. Put b = hy, M = cl k(M) and § = g(h,|M) (7 is

well defined, since hyM = hyclh,(M), clhyh,(M) = clh(M) = M,).
Now, we can obtain (see [11]) the following theorems of this kind:
If a complete metric space Y, weightY < 7, i8 an AE-space for the

class of metric spaces of weight less than or equal to T and of dimension less

than or equal to m, then Y is an AE-space for the class of t-collectionwise
normal spaces of dimension less than or equal to n.

REFERENOCES

{1] A.B. Apxarrenbckuit, O gaxmopusayuu omoGpaxcenuii no eecy u pasmepnocmu, IJo-
xnaget Axamemuu Hayk CCCP 174 (1967), p. 1243-1246.
{2] C. BoraTnif, O mempuueckux pempaxmax, ibidem 204 (1972), p. 522-524.
{3] — u YO. M. CMHEDPHOB, Annpoxcumayus noausopamu u Haxmopusayuonrsle meopemovl 0AA
ANR-buxomnakmos, Fundamenta Mathematicae 87 (1975), p. 195-205.
{4] M. KaTteTtoB, O npodosxcenuu .ioxavio xoneynsix noxpsimuii, Colloquium Mathematicum 6
(1958), p. 145-151.
{51 W. Kulpa, Factorization and inverse expansion theorems for uniformities, ibidem
21 (1970), p. 217-227.
[6] — On uniform universal spaces, Fundamenta Mathematicae 69 (1970), p. 243-251.
[7] B.JI. KnrommrH, O coseputennsix omodpaiCceHunx napaxomMnaKmuuax npocmpancims, JJoxaambl
Axanemun Hayk CCCP 159 (1964), p. 734-737.
[8] C. Kuratowski, Sur le prolongement des fonctions continues et les transformations
en polytopes, Fundamenta Mathematicae 24 (1935), p. 259-268.
[9] S. Marde&ié, On covering dimension and inverse limits of compact spaces, Illinois
Journal of Mathematics 4 (1960), p. 278-291.
110] C. 1. Henen, Yemsipe meopemst 3. Maiixaa o ceuenunx, W3pecrus Maremaruyeckoro M-
craryra BAH 15 (1974), p. 389-393.
{11] — m M. M. Yo6an, O Jdsyx meopemax Jayxepa, MaTeMATHXa H MATEMATHYeCKO 00pa3oBa-
mde, Martepnamu ot IV nponerna xomdeperigass 22 BM/I, Ieprux 1976.
{12] B. A. ITacuBEKXOB, 06 w-omobpaxcenuax u oopamuuix cnexmpax, Joxnag AKageMHHM HayK
CCCP 150 (1963), p. 488-491.
{13] T. Cxopae u FO. M. CMupPHOB, Paxmopu3ayuoHHas U annpoKCUMAUORKAA meopema 04R
Kozomonozuii Arexcandposa-Qexa ¢ xaacce 6uxomnaxmos, ibidem 220 (1975), p. 1031-1034.

AINSTITUTE OF MATHEMATICS
SILESIAN UNIVERSITY
.KATOWICE

Regu par la Rédaction le 18. 11. 1977



