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ASSOCIATIVE AND IDEMPOTENT ALGEBRAS
ARE AT MOST TERNARY

BY

J. PLONKA (WROCLAW)

0. Let %A = (X; F) be an algebra. We denote by A™(F) the set
of all n-ary algebraic operations in %, and by A(F) the set of all alge-
braic operations in U (see [1]). For two algebras U and B we write A =B
if A=(X; F), B=(X; G) and A(F) = A(G). An algebraic operation
f(®yy ...y ;) is called ¢dempotent if f(x,...,x) =« for any ve¢X. If any
fe F is idempotent, we say that the algebra U is idempotent. An algebraic
operation f(z,, ..., @,) is called to be associative if for any x,, ..., Tpp_;e X
it satisfies

f(f(-’”n cory @)y Tpyry ooy wZn—l) =f(a"1rf(m27 ooy Bpg1)y Bpgay ooy wzn—l)

T e =f(i171, coy @1y [ (@, "'7w2n—1))°

We assume that any nullary and unary operation is associative.
We say that an algebra A = (4; F) is associative if there exists a set G
of associative operations such that % = (4; G). In the sequel by saying
that A = (X; F) is associative we shall mean that all operations belonging
to F are associative. We denote by J() the algebra (X; I(F)), where
I(F) is the set of all idempotent algebraic operations in %. The algebra
J(A) is called the full idempotent reduct of A or, briefly, the idempotent
reduct of A.

For any algebra U = (X; F) E. Marezewski has defined a number
o(N), called the arity of A, as follows:

o(A) = min{n: A = (X; A™(F))}; if this minimum does not exist,
we accept o(UA) = —1.

In this paper we prove (Theorem 1) that if A = (X; F) is an idem-
potent, associative algebra and F # @, then A = (X ; {t(f )}mr), where
each t(f) belongs to A(F) and is at most ternary. From this it follows
that o(A) < 3.

Further we prove (Theorem 2) that if A = (X; f(,,...,,)) is an
associative algebra, f(z, ..., #) # # and there exist idempotent algebraic
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operations in 9 different from projections, then
I(A) = (X; t(my, x5, 73)) for some teI(f).

1. LEMMA 1. If an operation p(w,,...,2,) for n>3 is idempotent

and associative, then it is an iteration of the operation
1(Zyy Xy Xg) = P(Xyy Tpy Tgy .00y T3).
Proof. Write
1a(@y, oy T3) = L(@y, @y, X)
and, for 2 <k<n-—1,
beg1 (B1y Tay ooy Tpgo) = 8(®1y ooy Bemry Ubhy By Trys)s Bips)-

Now it is enough to show that
(1) U@y ooy Bpgy) = D(Byy Doy oy Ty By vy Tya)s
and then to take

tpe1 (@10 ey m,;) = P(®yy .0y @y).

By assumption, (1) holds for ¥ = 2. Assume that (1) holds for a
fixed %k, 2 <k < n—1. Then

g1 (1) vy Tpys)
= tk(wn cory By By Ti1s Tita) wk+2)
= p(wl, coey Tg—1, p(wlu Prt+1y Ty <+ 0y wk+2)7 P29+ mk+2)
=p(:L‘1, ooy Bpgry P(Bpygy ooy wk+2),‘t'vk+27 ceey wl,c+2)_

=p(w1, cooy Tpyyy Tpggy oeey 501,.,.2),

which completes the proof.

From Lemma 1 it follows

THEOREM 1. If W = (X; F) is an idempotent, associative algebra,
then W = (X; {t(f)}sr), where t(f) =f if f is less than ternary and
t(f) (@1, @3, @5) =f(a71’ By gy -y T5) Oherwise. .

Remark. The assumption of associativity in Lemma 1 and Theorem 1
is essential. In fact, take an algebra

5B=({a'ly°--’a'n}’af(a"19°°'7a7n)) (n>3)7

and put f(ay,...,a,) = a; if all elements a,, ..., a, are different and
f(a,l, ..ey @ ) = a; otherwise (see [3]). Then any algebraic operation
having less than n variables is a projection.
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2. Let A = (X;f(wl, ...y @,)) for n > 2 be an algebra with the unique
associative fundamental opera.tlon Write

J1(®qy ..oy ®y 11n-1)) = f(@yy ..o,y @),
S @1y ooy B1pgsryn-1))
= f(fk(mn cooy Bririn=1))s Loghin-1)s ++*» “’1+(k+1)(n-—1)) (k>1).

In view of the associativity of the operation f we have

(i) Any a,lgt;braac operation in U is a projection or is equal to some
operation of the form fi(w;, ..., oy +km—yy)» Where k>1.

In particular, any idempotent algebraic operation not being a pro-
jection is of the form f, in some variables. '

If idempotent algebraic operations not being projections exist in U,
denote by ¥, the smallest integer for which fy (@y, ..., #14xyn-1) I8 idem-
potent.

LEMMA 2. Any idempotent algebraic operation in W not being a projection
18 generated by the operation fi (%, ..., &1 4kyn—1))- |

Proof. Observe first that any of the operations fy, for s =2, 3, 4, ...
is an iteration of f,,o, since

fzko(a’u ceey ml+2ko(n—l))
= fko (fko(wn ceey w1+ko(n—l))7 w2+ko(n;-l)’ ceey wl+2ko(n—1))7
and so on. Thus any fg, is idempotent. Further, we can easily see that
an operation fi (g, ..., Biy 1kt 1)) (perhaps with repetitions of variables)
is idempotent iff so is the operation fi(#, ..., & xn-1)); Moreover, the
second one generates the first one by 1dent1fy1ng or changing variables.
So, to prove our lemma, it is enough, by (i), to show that if an operation
S (@15 <oy By imn—1y) 18 idempotent, then m = sk, for some natural s.

Assume, to the contrary, that m = 8k, +r, where 8, = max{s: sk, < m},
and 0 <r < ky,. Then we have .

fel@,y ..., @) =fr(faoko Tyoory @)y &y onny a") = (2, ..., 2) =@,
since fy ., and f, are idempotent by assumption. Thus f, is idempotent
which contradicts the definition of the number k,.

THEOREM 2. For any algebra A = (X; f(»,, ..., ®,)) with the unique
associative fundamental operation, one of the four possibilities holds:

(a) I3(A) = (X; 9);
(b) n =2 and A is an idempotent semigroup;
(¢) n >3, f is idempotent, and W -= (X; f(x,, g, Ty, ..., T3))3

(d) n>2, f is not idempotent, in W there exist idempotent algebraic
operations not being projections, and

S(QI) = (X; fko(wlf Loy Tgy «oey wa))-
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Proof. If the projections are the only idempotent algebraic operations
in A, then we have (a). If n = 2 and f is idempotént, then we have (b).
If n > 3 and f is idempotent, then we have (¢) by Lemma 1. If f is not
idempotent and in A there exist idempotent algebraic operations different
from projections, then n > 2. So, by Lemma 2, f,,o(a:l, cony By pky(n—1)
generates all idempotent operations in . It is easy to observe that
Jig(@1y ooy Brigyn—1)) 18 associative, since f is associative and all variables
in f;, are different. Thus, by Lemma 1, we have (d).

COROLLARY 1. For any semigroup S = (X; x-y) we have three possi-
bilities:

(e) ¢ =@ for all xeX;

(f) © 18 not idempotent and J(S) = (X; 9);

(8) S is mot idempotent and I(S) = (X; x, &, x¥07'), where ky =
= min {k: #**! = a}.

COROLLARY 2. For any group ® = (G; x-y) with the exponent m we
have I(®) = (@; =, z,-27 ") (cf. [2]).
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