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Siciak’s extremal function of convex sets in CN

by Mirostaw BaraN (Krakow)

Abstract. In this paper we give formulas for Siciak’s extremal function for a class of
convex sets in C¥ that contains, in particular, closed balls in C¥ and R", as well as standard
simplexes in RY.

Introduction. Let E be a compact set in CV. The Siciak extremal
function of E is defined by

®(z, E) = sup ||p(2)|'/*e?: pe.2(CY), |iplle <1, degp>1],

for ze C", where 2(C") denotes the space of all polynomials of N complex
variables and ||p||z = sup|p|(E) (see [7]). It is known ([9], see also [8]) that

®(z, E) = sup ju(z): ueexpL, ul <1},

where L is the set of all plurisubharmonic functions f in CV with
sup | f(z)=log(1+]izl)) < + o0 (2]l = (z1*+ ... +]z5/H)"?). If E is a compact
set in C with positive logarithmic capacity, then log ®(z, E) is equal to the
generalized Green function of the unbounded component of C\ E with pole at
infinity.

The extremal function has many applications in the polynomial approxi-
mation theory and in other sections of complex analysis of one or several
variables. Therefore, an important (and in general difficult) problem is that of
giving an explicit formula for the extremal function. Recently Lundin [4]
found a representation for the extremal function of a convex symmetric set in
R". In particular, he gave an explicit fbrmula for the extremal function of the
unit ball in R¥. In this paper we give a similar representation for a class of
convex symmetric sets in CY. This class contains in particular convex
symmetric subsets of RM. In our considerations we use the main idea of
Lundin’s proof from [4], but we work out this idea in a different way. This
permits us to give effective formulas for the extremal function of convex
symmetric polyhedra in RY.

I wish to thank W. Plesmiak for his encouragement and help in writing
this paper.
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1. Basic lemma. In our considerations the crucial role is played by the
following lemma.

1.1. LEMMA. Let E be a compact set in CN and let zoe CV\ E. Assume that
there exist a domain D = C and a continuous mapping f: D — C¥, holomorphic
in D, which satisfies the following conditions:

(@) zo€f (D),

(B) f(aD) < E.

(Here D and 0D denote the closure and the boundary of D in C,
respectively.) Let a continuous function w: f(D)— [1, + oc) satisfy:

(i) w(z) =1 for zef (OD),

(i1} log(wof) is harmonic function in D,

(i) |If (Ol < Mw(f10), LeD, where M is a constant.

Then for every zef (D), ®(z, E) < w(z). In particular, ®(zo, E) < w(z,).

Proof. Fix uelL, ulz <0. Consider the function v: D —[—o0, 4 c0),
v({):=u(f())—logw(f({). This is a subharmonic function on D and it is
bounded above in D. If {,e D then, u being upper-semicontinuous we have

limsupv({) = llmsupu(f C))<thUP“ “(f Co)
~f (o

{—{o.eD {—={p.CeD

Using the Ascoli maximum principle for subharmonic functions (see [2]) we
see that v <0 on D. Therefore u(z) <logw(z) for zef(D), whence
(. EY< w(2) for zef (D).

2. Some properties of a function of Zhukovskii type. Let a, f€C be
fixed, a#0, |fl<af Let g(l,a, B =al+p"", [{|21, Eyp=Esla,f)
= C\g(C\B), where B-={|{|<1!. The function g is holomorphic and
univalent on || > 1 and E, is a symmetric set limited by an ellipse (if |B]
<|al) or it is a line segment (if |B] =laf). Let h({) = h({, 2, B) := ¢~ ' ({):
C\E, = C\B, where g({) =g({, «, B). The function h has the form h({) =
((+(C*—4ap)/?)/2¢ if we choose an appropriate branch of square root; |h|
extends to a continuous function on C, which is equal to 1 on E,. We denote
the extended function also by |h|. It is easy to verify the following properties
of the functions g and h.

2.1. ProrosiTion. (1) &lg(Q)—BL ™ g() = [ [L1>—IB1* 1L 2 (¢ =1
(2) |h(O)|=r>1if and only if { is a point of the ellipse
e, = > +I0* —4afl = 29(r?, |a}?, |B1?))

= {I{=2@PVH+IL+2(ap)"/* = 2g(r, |, |B)};
" (3) {eE, if and only if |{)*+]0*—4aB| < 2(la)*+|B); .
(4) thOI<r, r>1, if and only if (econve, = |[ra{—r ' B{ <

|2 72— 1812~ 2} ;

(5) @(, Eo) = |h()I, (eC.
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3. The extremal function for convex symmetric sets. For a fixed set E,
= Eo(a, B) and a compact set K = CV (K = R¥, if B # 0) which contains N
linearly independent points, we define a set E = E(a, B, K) as follows:

E={zeC": (z, y)eE, for every yeK},

where (- ) denotes the scalar product in C*. Then E is a compact, convex
and symmetric subset of C¥. The main result of this paper is the following:

3.1. THeoREM. (a) P(z, E) = max {®((z, y), Eo): yeK} = max {|h({z, y),
a, P)l: yeK}, zeC~.
(b) If zo€CM\E and ®(z,, E) = |h({zq, vo ). then

log @(alc+pL™' ¢, E)=loglll, [{l=1,
where c €C" is the vector given by the condition
(6) aloc+Blo'C=20 with (o= h({z0, yo)).
(c) Ep:= 'z: (=, E)<R) = E(xR, /R, K), R > 1.
Proof. If yeK is fixed, then u(z) = log|h(<z, y)) €L and ulz = 0. Hence
max ih(<z, y))N: ye K} < ®(z, E).

In order to prove the opposite inequality and assertion (b) of the
theorem, let us fix a point zoe C"\ E. Then

max h(<zo, YY) = (o, yod)l > 1.
Define f():=alc+pL ¢, (| = 1, where ¢ is given by (6). Then
c= (Ialz"z—wz "-_2)— l(550 zo—Blo ! Zo),  where r = |{o| = |h({zq, Yol

We have f({o) =z, and it is obvious that f satisfies assumption (o) of
Lemma 1.1 for D = C\B. Next, observe that f(dD) < E is equivalent to

IS (&%), yIPE+I<S(€9), y>* —4aBfl < 2(jaf*+|pl>) for every yeKk,

f0e R. The last inequality is equivalent to
(7) [<e, yDl = lar (2o, y>—Br™* (zo, }’)l(lotlzrzy--iﬂlzr”:")‘1 <1

for every 'yeK, which is satisfied in view of (4). Thus, condition (f) of Lemma
1.1 is also fulfilled. We have {zq, yo)» = g(h({z0, ¥0))) and, by (1), {c, yo)
= 1. Therefore {f({), yo> = g({). Put

w(z):=[h({z, yo))|  for zef(D).
Then

w(f () =|r(<fQ, vl =1, (€D,
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and the function w satisfies conditions (i) and (ii). Moreover,

IO < 2lallicli gl (€D,

whence we get (iii). Now, applying Lemma 1.1, we end the proof of (a) and
(b). Assertion (c) is obtained from (a) by use of Proposition 2.1.

4. Remarks and applications. We now give some corollaries to Theorem
3.1. Let E be a compact, convex and symmetric subset of RV with IntE = @
(in R™). (We regard here R" as a subset of C" such that C¥ = R¥+iR") Then

E={zeC": a(y) (z, yDe[—1, 1] for every yeK},
where K is a compact subset of the unit sphere Sy_, in RY and a(y)
;= 1/max }|{x, y): x€E! is a continuous function on K. If we put, in
Theorem 3.1, a = =4, E,=[—1, 1] and K, = la(y)y: yeK! instead of K,
then we get -
4.1. COROLLARY.
®(z, E) = max |®(a(y) &z, y), [-1, 1]): yeK}

= max {|h(a(y) <z, y)): yeK)
with h(0) = {+ (2 =112,

42. Remark. If K =Sy_,, then Corollary 4.1 reduces to Lundin’s
result [4]. Another proof of Lundin’s theorem has been given by Bedford
and Taylor [1].

Let E be a compact, convex and symmetric polyhedron in RV with
IntE # @. Then E can be written in the form

E= () {xeR": —o® < x, B9+ ... +xy P <a®),
k=1

where «® > 0 and lin(8'Y, ..., ) = R*. From Corollary 4.1 (with K finite)
we get

4.3. COROLLARY.

where h({) = {+((2-1)V2,
Let us also notice that Cbrollary 4.1 can be derived from Corollary 4.3
(it suffices to approximate E by symmetric polyhedra E, and make use of the

limit procedure: ®(z, E,)”®(z, E) if E,> E,,, and E = () E,, see [8)).

n=1
44. LunDiN's EXAMPLE. Let B be the closed unit ball in RY: B =
tx?+ ... +x% < 1}.In this case we have K = Sy_, and a(y) = 1. From Corol-
lary 4.1 we get
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®) ®(z, B) = max {|h(<z, yD): yeSy-4}-
(Another proof of (8) is given in [6].)

Let zoe C¥\B, r = ®(zq, B) = |h((zp, yo))} and let ¢ = a+ib, where a,
beRN, be given by (6). Then zy =4({o+{5Na+i3({o—C(5")b. We have
{a, yo> =1, <b, yo> =0 and from (7) we get ||lal| <1, ||bll < 1. Hence we
have a = yoeSy-,. Now, we can write

Hzoll? = Lo+ L5 I+ B (Co—Co N2 IIBI,
Zo» Tod—1 = (1= (o~ V),
lzoll2 +1<20, Zo>— 1] = 3(r2+77%) = g(r?).

Thus we get Lundin’s formula [5]:

® (2o, B) = (h(l1zoll* +1<z0, Zo>—11)""".

In some cases we are able to give a representation formula for the
extremal function of a set E, which is non-symmetric, by using Corollary 4.1
and the following result of Klimek [3].

45. TheoreM ([3]). Let £ =(fy, ..., fn): C¥ — C" be a polynomial map-
ping with deg fy = ... =deg fy =d > 1, such that f~*(0) = (f,, ..., f») "1 (0)
= {0}, where f, denotes the homogeneous part of f, of degree d. If E is a
compact set in CV, then

®(z,f~(E) = (2(f (2), E))""".

Let E be a compact, convex polyhedron in R with Int E # (). Suppose
that O0c E and that E has the representation

E=1{zeC": 2(z, y">+b,e[-1,1], k=1, ...,n},

where n > N, b,, ..., b,eR, y'V, ..., y™eR", lin(y'", ..., y™) = R¥. Assume
that there exists a€E such that 2da, yW)+b, = -1 for k=1,..., N
and suppose that y® =a® yM4 | +a® y™ with o, ...,a® >0 for k =
N+1, ..., n

Let us choose w'V, ..., w™eR" so that (W¥, y> =6, k, I =1, ..., N.
Under the above assumptions we define .

f@=ziwP+ ... +z22wM4q.

We have f~'(0) = {0} and

F:=f"Y(E)=Iyn Q 1{az‘,“’xf+ o e x3 <3(1-5y)
k=N+

where Iy =[—1, 1]" and b, = b, +2 <a, y¥). Then F is a compact, convex
and symmetric subset of RY with Int F # @ and we can apply Corollary 4.1
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to F. By Theorem 4.5 we get
¢(zs E) = (¢((<Z—a, y(1)>)1/2’ veey (<Z—a, y(N)>)U2a F))z-
4.6. ExampLe. Let E be the standard simplex in RV, ie, E

=conv(0, ey, ..., ey), where {e,, ..., ey} is the standard orthonormal basis
in RY. We can write E in the form

=lzeC": 2z,~1,...,2zy—1€[—1,1] and
2(z4+ ... +zy—1e[-1, 1]!.

Let f(z) = (z3, ..., z3). Then f~'(0) = |0! and f“(E) B, where B is the
unit ball in RY. We have @(z, B) = (®(z%, ..., z3, E))” and using Lundin’s
formula we get

®(z, E) = h(lzy|+ ... +]zn|+]z,+ ... +2x—1)).
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