ANNALES POLONICI MATHEMA'L'ICI XXVII (1972)

Some theorems on partial differential inequalities of parabolic type

by P. Besala (Gdańsk)

We treat a system of inequalities of the form

$$u_t^i \leqslant f^i(t, X, U, u_X^i, u_{XX}^i) \quad (i = 1, ..., m),$$

where $X = (x_1, \ldots, x_n)$, $U = (u^1, \ldots, u^m)$, $u_X^i = (u_{x_1}^i, \ldots, u_{x_n}^i)$ and $u_{XX}^i = (u_{x_ix_k}^i)$ $(j, k = 1, \ldots, n)$.

This note deals with a version of parabolic differential inequalities theorems in which weak differential inequalities and strong initial and boundary inequalities imply strong inequalities between functions involved in their existence domain. Theorems 1 and 2 established here, concerning bounded and unbounded domains respectively, are counterparts of a theorem proved in [2] for a system of differential inequalities of the first order.

1. Preliminary definitions. For any vectors $U=(u^1,\ldots,u^m)$, $V=(v^1,\ldots,v^m)$ we shall write

$$U \leqslant V$$
 if $u^{j} \leqslant v^{j}$ $(j = 1, ..., m)$,

and

$$U < V$$
 if $u^{j} < v^{j}$ $(j = 1, ..., m)$.

For a fixed i we write

$$U \stackrel{i}{\leqslant} V$$
 if $u^{j} \leqslant v^{j}$ $(j = 1, ..., m)$ and $u^{i} = v^{i}$.

Let D be a domain of the (n+1)-dimensional space of the variables $(t,X)=(t,x_1,\ldots,x_n)$. We assume that D is contained in the zone $0< t<< T\leqslant +\infty,\ X$ arbitrary, and the intersection $S_{\bar{t}}$ of the closure of D with any plane $t=\bar{t},\ 0\leqslant \bar{t}\leqslant T$, is non-empty. \sum will stand for the part of the boundary of D, contained in the zone 0< t< T.

A vector-function $U(t, X) = (u^1(t, X), ..., u^m(t, X))$ will be called regular in D if it is continuous in the closure of D and possesses continuous derivatives $\partial/\partial t$, $\partial/\partial x_j$, $\partial^2/\partial x_j\partial x_k$ in D.

34 P. Besala

Let functions $f^i(t, X, U, Q, R)$ (i = 1, ..., m) be defined for $(t, X) \in D$ and arbitrary $U = (u^1, ..., u^m), Q = (q_1, ..., q_n), R = (r_{jk}) (j, k = 1, ..., n)$. We shall make use of the following definition of ellipticity given by J. Szarski.

DEFINITION 1. A function $f^i(t, X, U, Q, R)$ is called *elliptic* with respect to a function U(t, X) of class $C^1(D)$ if for any two symmetric matrices $R = (r_{jk})$, $\tilde{R} = (\tilde{r}_{jk})$ (j, k = 1, ..., n) such that

$$\sum_{j,k=1}^{n} (r_{jk} - \tilde{r}_{jk}) \lambda_j \lambda_k \leqslant 0$$

we have

$$f^i(t,X,\,U(t,X),\,u^i_X(t,X),\,R)\leqslant f^i(t,X,\,U(t,X),\,u^i_X(t,X),\,\tilde{R)}$$
 for $(t,X)\in D$.

DEFINITION 2. A function $f^i(t, X, U, Q, R)$ will be said to satisfy condition W with respect to U if $U \leq V$ implies

$$f^{i}(t, X, U, Q, R) \leq f^{i}(t, X, V, Q, R).$$

2. Differential inequalities in bounded regions. In this section for the domain D introduced above it will be assumed that the intersection of its closure with any zone $0 \le t \le t_0$, $t_0 < T$, is bounded.

The index i being fixed let $a^i(t, X)$, $\beta^i(t, X)$ be functions defined and positive on an open subset Σ_i of the set Σ and let $\beta^i(t, X)$ be bounded on Σ_i . Denote by $l^i(t, X)$, $(t, X) \in \Sigma_i$, a direction orthogonal to the t-axis and assume that some segment starting at (t, X) of the straight half-line from (t, X) in the direction l^i is contained in the closure of D. A vector-function U(t, X) will be called Σ -regular if it is regular in D and the derivatives du^i/dl^i exist at points of Σ_i respectively (i = 1, ..., m).

We recall the definition of Condition C introduced in [2].

Condition C. The index i being fixed the function $f^i(t, X, U, Q, R)$ will be said to satisfy Condition C with respect to u^i if $u^i \leq \tilde{u}^i$ implies

$$f^{i}(t, X, u^{1}, ..., u^{i-1}, u^{i}, u^{i+1}, ..., u^{m}, Q, R) - f^{i}(t, X, u^{1}, ..., u^{i-1}, \tilde{u}^{i}, u^{i+1}, ..., u^{m}, Q, R) \leqslant \sigma(t, u^{i} - \tilde{u}^{i}),$$

where the function $\sigma(t, z)$ has the following properties:

- (a) $\sigma(t,z)$ is continuous and non-negative in the half-strip $t \in (0,T)$, $z \leq 0$, and $\sigma(t,0) \equiv 0$,
 - (b) the left-hand minimum solution of the equation

$$\frac{dz}{dt} = \sigma(t, z)$$

satisfying the condition $\lim_{t\to T_-} z(t) = 0$ is $z(t) \equiv 0$.

THEOREM 1. Suppose the functions $U(t, X) = (u^1(t, X), \ldots, u^m(t, X)),$ $V(t, X) = (v^1(t, X), \ldots, v^m(t, X))$ are Σ -regular in D and satisfy the initial inequalities

(1)
$$U(0, X) < V(0, X) \quad \text{for } X \in S_0$$

and the boundary inequalities

$$(2) \qquad u^{i}(t,X) < v^{i}(t,X) \quad \text{for } (t,X) \in \Sigma - \Sigma_{i},$$

$$\beta^{i}(t,X) \left[u^{i}(t,X) - v^{i}(t,X) \right] - a^{i}(t,X) \frac{d \left[u^{i} - v^{i} \right]}{d^{l^{i}}} \leqslant -\eta$$

for $(t, X) \in \Sigma_i$ (i = 1, ..., m), η being a positive constant. Define

(3)
$$G = \{(t, X) \in D \colon U(t, X) \leqslant V(t, X)\}$$

and let the inequalities

$$(4) u_t^i(t,X) \leqslant f^i(t,X,U(t,X),u_X^i(t,X),u_{XX}^i(t,X)) (5) v_t^i(t,X) \geqslant f^i(t,X,V(t,X),v_X^i(t,X),v_{XX}^i(t,X)) (i = 1,...,m)$$

be satisfied whenever $(t, X) \in G$. We assume that every function $f^i(t, X, U, Q, R)$ (i = 1, ..., m) is elliptic with respect to V(t, X) and satisfies condition W with respect to U and condition C with respect to u^i .

Under these assumptions the inequality

(6)
$$U(t, X) < V(t, X)$$
 holds true for $(t, X) \in D$.

Proof. It is well known ([3], Theorem 63.1) that if in (4) or (5) the weak inequality is replaced by the strong one, then Theorem 1 is valid. In this case condition C is superfluous. We shall show that the additional condition C enables us to reduce, similarly as in [2], the proof of Theorem 1 to the proof of the theorem concerning the strong differential inequalities. To this end we take advantage of the following lemma proved in [2].

LEMMA. Let z_0 be any fixed positive number. If the function $\sigma(t,z)$ has properties (a) and (b), then for every $\varepsilon > 0$ there is $\delta_0(\varepsilon) > 0$ such that for any $0 < \delta < \delta_0$ the right-hand minimum solution $\omega(t)$ of the equation

(7)
$$\frac{d\omega}{dt} = -\sigma(t, -\omega) - \delta$$

through $(0, z_0)$ exists and is positive in $(0, T - \varepsilon)$.

Now, $\varepsilon > 0$ being chosen arbitrarily let Σ_i^{ε} , $(\Sigma - \Sigma_i)^{\varepsilon}$ be the parts of Σ_i , $\Sigma - \Sigma_i$ respectively, which are contained in the zone $0 < t < T - \varepsilon$. Put

$$z_1=\min_{j,k}\{\inf_{S_0\cup(\varSigma-\varSigma_j)^\varepsilon}[v^j(t,X)-u^j(t,X)],\ \inf_{\varSigma_k^\varepsilon}\eta\,[\beta^k(t,X)]^{-1}\}.$$

36 P. Besala

It follows from our assumptions that $z_1 > 0$. In the Lemma we choose $0 < z_0 < z_1$ and δ so that $\omega(t) > 0$ in $(0, T - \varepsilon)$. Observe that $\omega(t) \leqslant z_0 < 0$ $< z_1 \leqslant \eta \left[eta^i(t,X)
ight]^{-1}, \ (t,X) \epsilon \ \Sigma_i^\epsilon. \ \ ext{Hence, denoting} \ \ \varOmega(t) = \left(\underline{\omega(t),\ldots,\omega(t)}
ight),$

$$ilde{u}^i(t,X)=u^i(t,X)+\omega(t), \quad ilde{U}(t,X)=U(t,X)+\Omega(t), \quad ext{we get from} \quad (1)$$
 and (2)

(8)
$$\tilde{U}(0, X) < V(0, X)$$
 for $X \in S_0$,

$$\begin{array}{lll} \tilde{U}(0,X) < V(0,X) & \text{for } X \in \mathcal{S}_0, \\ (9) & \tilde{u}^i(t,X) < v^i(t,X) & \text{for } (t,X) \in \Sigma - \Sigma_i^\epsilon \end{array}$$

and

$$(10) \qquad \beta^{i}(t, X) [\tilde{u}^{i}(t, X) - v^{i}(t, X)] - \alpha^{i}(t, X) \frac{d [\tilde{u}^{i} - v^{i}]}{d l^{i}} < 0$$

for
$$(t, X) \in \Sigma_i^{\epsilon}$$
 $(i = 1, ..., m)$.

Let

$$ilde{G}^i = \{(t,X) \, \epsilon \, D \colon \ ilde{U}(t,X) \stackrel{i}{\leqslant} V(t,X) \}.$$

We have $\tilde{G}^i \subset G$ (i = 1, ..., m) and consequently inequalities (4), (5) hold for $(t, X) \in G^{\tilde{i}}$. Now adding (4) and (7) and applying successively conditions C and W we obtain

$$egin{split} & ilde{u}_t^i \leqslant f^i(t,\,X,\,U,\,u_X^i,\,u_{XX}^i) - \sigma(t,\,-\omega) - \delta \ & \leqslant f^i(t,\,X,\,u^1,\,\dots,\,u^{i-1},\, ilde{u}^i,\,u^{i+1},\,\dots,\,u^m,\,u_X^i,\,u_{XX}^i) - \delta \ & \leqslant f^i(t,\,X,\, ilde{U},\, ilde{u}_X^i,\, ilde{u}_{XX}^i) - \delta \end{split}$$

that is, since $\delta > 0$,

(11)
$$\tilde{u}_t^i < f^i(t, X, \tilde{U}, \tilde{u}_X^i, \tilde{u}_{XX}^i) \quad \text{ for } (t, X) \in \tilde{G}^i.$$

Taking into account (8), (9), (10), (11) and (5) we see that all the assumptions of the theorem on strong differential inequalities are satisfied ([3], Theorem 63.1). Hence $\tilde{U}(t,X) < V(t,X)$ for $(t,X) \in D, \ 0 \leqslant t < T - \varepsilon$. Since $\omega(t) > 0$ and ε is arbitrary, inequality (6) holds in D.

3. Differential inequalities in unbounded regions. In this section we retain all the definitions of section 1. For the domain D introduced there we assume that for any $t \in \langle 0, T \rangle$ the set S_t (see Section 1) is unbounded.

We introduce the following conditions.

CONDITION L. If the function $f^{i}(t, X, U, Q, R)$ satisfies the inequality

$$[f^{i}(t, X, U, Q, R) - f^{i}(t, X, \tilde{U}, \tilde{Q}, \tilde{R})] \operatorname{sgn}(u^{i} - \tilde{u}^{i})$$

$$0 \leqslant L_0 \sum_{j,k=1}^n |r_{jk} - ilde{r}_{jk}| + L_1(|X|+1) \cdot \sum_{j=1}^n |q_j - ilde{q}_j| + L_2(|X|^2+1) \sum_{l=1}^m |u^l - ilde{u}^l|,$$

where $|X| = (\sum_{i=1}^{n} x_i^2)^{1/2}$ and L_0, L_1, L_2 are some positive constants, then we say that f^i satisfies condition L.

CONDITION C'. If there is a positive function K(X) defined in the n-space and bounded on any compact set of this space and such that $u^i \leq \tilde{u}_i$ implies

$$f^{i}(t, X, u^{1}, ..., u^{i-1}, u^{i}, u^{i+1}, ..., u^{m}, Q, R) - f^{i}(t, X, u^{1}, ..., u^{i-1}, \tilde{u}^{i}, u^{i+1}, ..., u^{m}, Q, R) \leq K(X) |u^{i} - \tilde{u}^{i}|,$$

then f^i is said to satisfy condition C' with respect to u^i .

THEOREM 2. Let vector-functions U(t, X), V(t, X) be regular in D and satisfy the initial-boundary inequality

(12)
$$U(t, X) < V(t, X) \quad \text{for } (t, X) \in S_0 \cup \Sigma$$

and let

(13)
$$u^{i}(t, X) - v^{i}(t, X) \leq M_{1} \exp(M_{2}|X|^{2}) \quad \text{for } (t, X) \in D$$

 $(i=1,\ldots,m),\ M_1,\ M_2$ being positive constants. Assume that the differential inequalities

$$egin{array}{lll} (14) & u^i_t \leqslant f^i(t,\,X,\,U,\,u^i_X,\,u^i_{XX}) \ (15) & v^i_t \geqslant f^i(t,\,X,\,V,\,v^i_Y,\,v^i_{XY}) \end{array} & (i=1,\,...,\,m) \end{array}$$

hold true for $(t, X) \in D$. Moreover, we assume that every function $f^i(t, X, U, Q, R)$ is elliptic with respect to U(t, X) and satisfies condition W with respect to U, condition C' with respect to u^i and condition L.

Then we have

$$(16) U(t,X) < V(t,X) in D.$$

Proof. The assumptions of Theorem 2 imply all the assumptions of the theorem on weak differential inequalities (cf. [3], Theorem 65.1, or [1] Theorem 1), whence

(17)
$$U(t, X) \leqslant V(t, X) \quad \text{in } D.$$

To prove the strong inequality (16) take an arbitrary point $(t, \overline{X}) \in D$. Define

$$h(t, X) = \bar{t} + 2 - t - (|X - \bar{X}|^2 + 1)^{a/2},$$

where α depending on the point (\bar{t}, \bar{X}) will be determined later. Consider the set of points $(t, X) \in D$ which satisfy the inequality h(t, X) > 0. Let Δ be that component of this set which contains (\bar{t}, \bar{X}) and let $\sigma = \partial \Delta \cap (S_0 \cup \Sigma)$, $\partial \Delta$ being the boundary of Δ . We introduce the function

$$\bar{h}(t, X) = [\bar{t} + 2 - t - (|X - \bar{X}|^2 + 1)^{\alpha/2}]e^{-\bar{K}t}$$

38 P. Besala

where $\overline{K} = \sup_{\overline{\Delta}} K(X)$. Let us define

$$\overline{H}(t, X) = (\overline{h}(t, X), \dots, \overline{h}(t, X)), \quad \overline{U}(t, X) = U(t, X) + \varepsilon \overline{H}(t, X).$$

By (12) $\varepsilon > 0$ can be chosen so small that

$$(18) \overline{U}(t,X) \leqslant V(t,X)$$

for $(t, X) \in \sigma$. From (17) and the definition of Δ it follows that inequality (18) is also satisfied on the remaining part of $\partial \Delta$ except the points lying on the plane t = T (if such points belong to $\partial \Delta$).

Now we show that $\overline{U}(t, X)$ satisfies, in Δ , inequalities (14). Evidently

$$(18) \qquad \qquad \overline{u}_t^i \leqslant f^i(t, X, \overline{U} - \varepsilon \overline{H}, \overline{u}_X^i - \varepsilon \overline{h}_X, \overline{u}_{XX}^i - \varepsilon \overline{h}_{XX}) + \varepsilon \overline{h}_t.$$

Since $\bar{h} > 0$ in Δ , using condition W and then condition C' we get

$$\begin{split} (20) \qquad f^i(t,\,X,\,\overline{U} - \varepsilon \overline{H}\,,\,\overline{u}_X^i - \varepsilon \overline{h}_X,\,\overline{u}_{XX}^i - \varepsilon \overline{h}_{XX}) \\ \leqslant & f^i(t,\,X,\,\overline{U}\,,\,\overline{u}_X^i - \varepsilon \overline{h}_X,\,\overline{u}_{XX}^i - \varepsilon \overline{h}_{XX}) + \varepsilon \overline{K} \cdot \overline{h}\,. \end{split}$$

Further, condition L implies the inequality

$$egin{aligned} (21) & f^i(t,\,X,\,\overline{U},\,\overline{u}_X^i-arepsilon h_X,\,\overline{u}_{XX}^i-arepsilon h_{XX}) \ & \leqslant f^i(t,\,X,\,\overline{U},\,\overline{u}_X^i,\,\overline{u}_{XX}^i) + arepsilon L_0 \sum_{j,k=1}^n |h_{x_jx_k}| + arepsilon L_1(|X|+1) \sum_{j=1}^n |h_{x_j}|. \end{aligned}$$

By (19), (20), (21) it follows that if we show that

$$F(\hbar) \equiv L_0 \sum_{i,k=1}^n |\bar{h}_{x_j x_k}| + L_1(|X|+1) \sum_{i=1}^n |\bar{h}_{x_j}| + \bar{K} \hbar + \bar{h}_t \leqslant 0$$

in Δ , then $\overline{U}(t, X)$ will satisfy

$$egin{aligned} ar{u}^i_t \leqslant & f^i(t,\,X,\,\overline{U}\,,\,ar{u}^i_X,\,ar{u}^i_{XX}) \end{aligned} \quad ext{for } (t,\,X)\,\epsilon\,\,arDelta\,\,\,(i\,=\,1\,,\,\ldots,\,m)\,.$$

An easy computation shows that

$$egin{split} F(ar{h}) \leqslant e^{-ar{K}t} \{L_0 \, a \, |a-2| \, n \, (|X-ar{X}|^2+1)^{rac{a}{2}-1} + L_0 \, a n \, (|X-ar{X}|^2+1)^{rac{a}{2}-1} + \ & + L_1 (|X|+1) \, a \sqrt{n} \, (|X-ar{X}|^2+1)^{rac{a}{2}-rac{1}{2}} - 1 \} \, . \end{split}$$

Since $|X|\leqslant |\overline{X}|+|X-\overline{X}|$ and $(|X-\overline{X}|^2+1)^{\frac{\alpha}{2}}\leqslant \overline{t}+2-t\leqslant \overline{t}+2$ in \triangle , we obtain

$$F(\hbar) \leqslant e^{-\overline{K}t} \{an(\bar{t}+2)[L_0(|\alpha-2|+1) + L_1(|\bar{X}|+2)] - 1\}.$$

Hence it follows that α can be chosen so small that $F(h) \leq 0$ in Δ .

The differential inequalities (22), (15), the initial-boundary inequality (18) and the other assumptions of Theorem 2 imply that for the domain Δ

all the assumptions of the theorem on weak differential inequalities of parabolic type proved in [3] (Theorem 64.1) are fulfilled. Thus we obtain

$$\overline{U}(t, X) \leqslant V(t, X)$$
 for $(t, X) \epsilon \Delta$...

In particular this inequality holds at (\bar{t}, \bar{X}) . Since $h(\bar{t}, \bar{X}) > 0$ the theorem follows.

References

- [1] P. Besala, On solutions of Fourier's first problem for a system of non-linear parabolic equations in an unbounded domain, Ann. Polon. Math. 13 (1963), p. 247 265.
- [2] On partial differential inequalities of the first order, ibidem 25 (1971), p. 145-148.
- [3] J. Szarski, Differential inequalities, Warszawa 1965.

Reçu par la Rédaction le 5. 12. 1970