VOL. XXXVIII 1977 FASC. 1

A SOLUTION OF A PROBLEM OF B. ROTMAN

BY

E. GRZEGOREK (WROCŁAW)

The following proposition gives the negative answer to the question of Rotman (1) (P 937).

PROPOSITION. Let M be an infinite set of power a. Then there exists a family $\{f_i\colon 0\leqslant i<\alpha\}$ of bijections of M onto M with the following properties:

(a) for all i < j < a we have

$$F_i = \emptyset$$
 and $|M \setminus F_{ij}| = a$,

where

$$F_i = \{x \in M : f_i(x) = x\}$$
 and $F_{ij} = \{x \in M : f_i(x) = f_i(x)\};$

(b) there is no subset $X \subseteq M$ of power a such that

$$|f_0(X) \cap f_1(X)| < \alpha$$
 and $|f_0(X) \cap f_2(X)| < \alpha$.

Proof. Let $\{M_k: k < 8\}$ be a partition of M such that $|M_k| = a$ for all k < 8. Let f_0, f_1 , and f_2 be bijections of M such that

$$f_1(x) = f_0(x) \quad \text{for every } x \in \bigcup \{M_k : k < 4\},$$

$$f_2(x) = f_0(x) \quad \text{for every } x \in \bigcup \{M_k : k > 3\},$$

$$f_0(M_0 \cup M_1) = M_2 \cup M_3, \quad f_0(M_2 \cup M_3) = M_0 \cup M_1,$$

$$f_0(M_4 \cup M_5) = M_6 \cup M_7, \quad f_0(M_6 \cup M_7) = M_4 \cup M_5,$$

$$f_1(M_4) = M_5, \quad f_1(M_5) = M_4, \quad f_1(M_6) = M_7, \quad f_1(M_7) = M_6,$$

$$f_2(M_0) = M_1, \quad f_2(M_1) = M_0, \quad f_2(M_2) = M_3, \quad f_2(M_3) = M_2.$$

Assume that M is ordered in the type a. We define, by transfinite induction on i, a family $\{f_i: i < a\}$ of bijections of M such that f_0, f_1 , and f_2 are as at the beginning of the proof, and for every 2 < i < a and every $x \in M$ we have $f_i(x) \in M_{ix}$, where

$$M_{ix} = M \setminus \{\{x\} \cup \{f_i(x') : x' < x\} \cup \{f_{i'}(x) : i' < i\}\}.$$

⁽¹⁾ See B. Rotman, Correction to the paper "A theorem on almost disjoint sets", Colloquium Mathematicum 32 (1975), p. 307-308.

It is easy to check that the family $\{f_i\colon i<\alpha\}$ with the above properties satisfies conditions (a) and (b) of the Proposition. Now, all we need to complete the proof is to define such a family of bijections. Let $2< i<\alpha$ and assume that the bijections $f_{i'}$ for i'< i have been defined. In order to define a bijection f_i we determine, by transfinite induction with respect to order in M, the value $f_i(x)$ for $x\in M$. Let $x\in M$ and assume that $f_i(x')$ have been defined for x'< x. Let $f_i(x)$ be the smallest element of M_{ix} . It remains to prove that f_i is a bijection. It is clear that f_i is an injection. Thus it is enough to prove that f_i is a surjection. Suppose, on the contrary, that f_i is not a surjection, i.e., that there exists $x_0 \in M$ such that $f_i(x) \neq x_0$ for every $x \in M$. Put

$$A = \{y : \exists (i' < i) (f_{i'}(y) = x_0)\} \cup \{x_0\}.$$

It is easy to see that $x_0 \in M_{ix}$ for every $x \in M \setminus A$. Hence, since $f_i(x) = \min M_{ix}$, we have $f_i(x) \leq x_0$ for every $x \in M \setminus A$. Thus $|f_i(M \setminus A)| < a$. On the other hand, since f_i is an injection, we have

$$|f_i(M \setminus A)| = |M \setminus A|.$$

We have |A| < a, since $f_{i'}$ is an injection for every i' < i. Hence $|M \setminus A| = a$. Therefore $|f_i(M \setminus A)| = a$. Since we have shown that $|f_i(M \setminus A)| < a$, we have a contradiction.

Remark. It is also possible to prove the Proposition without transfinite induction.

INSTITUTE OF MATHEMATICS
POLISH ACADEMY OF SCIENCES, WROCŁAW

Reçu par la Rédaction le 2. 1. 1976