ANNALES
POLONICI MATHEMATICI
XIX (1967)

An additional note on entire functions
represented by Dirichlet series

by A. R. Reppy (Madras, India)

1. Introduction. This note is concerned with two earlier notes,
one by Rajagopal and the present author [2], the other by Rahman [1].
It seecks to prove certain theorems in [2] under conditions less restrictive
than the ones assumed in [2], using two auxiliary results of [1] stated

below as Lemmas 1, 2, and adopting the following notation, borrowed
from [2].
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is an entire function in the sense that the Dirichlet series representing
it is absolutely convergent for all finite s. For this funection,
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As stated in [2], we may differentiate the Dirichlet series for f(s).j times
(j > 1) and obtain another such series absolutely convergent for all finite s
to f‘”(s), which is thus another entire function. Following [2] again, we
define M(0), 4'(0), o, 2/, ok, A for f¥(s) exactly as we have defined M (o),
u(a), 0, A, 0w, As for f(s) with the understanding that we may sometimes
write for convenience M (o) = M%), u(o) = u%o), ete.

One conclusion which emerges from [2] is that some results involving
either M’(0) or 4'(0), j = 0, such as Lemmas 3, 4 of [2], can be proved
without imposing any additional condition on {4,}.

In the present note there are some further results involving M (o),
j = 0 proved without an additional condition on {1.}. These results are
Theorem I, which gives without such a condition on {1}, part of an earlier
result ([2], Theorem 1), and Theorems II, II’', which give likewise two
other earlier results ([2], Theorems 3, 3'). Theorem II contains, as its
Corollary II, Rahman’s main results ([1]; (10), (11) in p. 138), and as its
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case A, = n, two results proved by Shah by an enfirely different method
([3], Theorems A, 1). On the other hand, Theorem II is itself contained
in Theorem I,

2. Lemmas. Of the lemmas given below, the first three are quoted
from earlier papers and the remaining three are their extensions wholly
or in part.

LEmmA 1 ([1]; (13), (14)). Given n> 0,5 > 0, 8, = 0, + 1, and any
d = 8(o) > 0 (which in our applications is either fized or tends to 0 as o ->oo),
we have

(1) M(o)—n < (o—0a))M*(a)+[](s)] (o> ay),
(2) ]l[’(a)—n'<%—M(a+6).

LEMMA 2 ([1], p. 139). log M (o) is a monotonic increasing downward
convex function of o and hence there exists a monotonic increasing function
w(a) such that '

(3) log M (o) = log M (o)) + | w(m)de (o> oy),
lim SUP logw(o) _ ¢

(4) aoo 1DE o A’

(4) is not given by Rahman [1], but is readily ‘deducible from (3), just
a8 the analogue of (4) for g. and A, is deducible from the analogue of (3)
for logu(e) ([2], Lemma 3).

Remarks. From (3) it i8 clear that w(s) tends to infinity with o,
since, if w (o) has finite limit, log M (¢)/¢ will have the same limit, which
is a possibility to be excluded as it can occur only when f(s) has a finite
number of terms. Save in this excluded case, it follows from (3) that

L)

log (o) > [ w(@)dw > pow(}o),
a/2
or

log M(o) _ 1
T 72
LeMMA 3 ([2], Lemma 4). For all sufficiently large o,
M1{o) < log M (o)
Mo) = c
Lemma 1°. Given a positive integer j(=1), 5" > 0 and 6 = 6(n) > 0,
we have

y 1
(2) M(e)—y < Zs—;M(a +4).

w(do)>o00 as o->oo0.
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Proof. The proof, though exactly like that of (2), is given here for
the sake of completeness. We first find s; = o +it; such that 117 (85)] >
> M'(o)—15'. We then use the well-known formula

(0 gt f(s)
19(sy) = o [(s . );-+1d35 where I |s—s;|=6,

to infer that
M(o)—o' < |V (s))l <5 M(a+0).

LemMA 2'. In Lemma 2 we can evidently replace log M (o) by log M'(s),
where § 18 an integer (=1), and w(c) by the monotonic increasing function
w'(0) associated with log M’(a) precisely as w(a) is associated with log M (o).

LeMMA 3'. For any integer j =1, and all sufficiently large o.

M’(a) log M (o)
M( N7 conbt [—o—-] >0

Proof. We have only to use induction on j involving the form of
Lemma 3 with M'*'(¢) and M’(c) instead of M'(c) and M (s) as well as
the following consequence of that form of Lemma 3:

log M’(c) > const log M (o).

3. Theorems. The part ¢ = p' of the theorem which follows is
stated by Rahman ([1], (9)), apparently with the superfluous restric-
tion ¢ < oo.

ToeorREM I. If f(s) is any entire Dirichlet series for which 0 < 4 <
< p < oo, and f(s) is the differentiated series, then

(3) e=1¢,, A=7A.

Proof. From the remarks following Lemma 2 it is plain that, as

g —>0Q,

(6 logo
) log Ml(o) log Ml(a)

= o(1).
Using (1) and then (6), we get successively

log M (o) +10g[1 (o )] < log M(e)-+loge —|—10g[1 + ]5_1((..)’.] ,

log M (¢)+0(1) < log M(o)[1+o(1)]+0(1) (o->00),
loglog M (o) + 0(1) << loglog M*(e) +0(1);
(1) st@@%ﬂ m Sup loglog J*(c)

g—00 ]_D_f g—00 lllf g
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On the other hand, (_2') for a fixed 4 gives us in snecession:
log MY o)+ 0(1) < log M(o+d)—logd (o-—>00),
loglog M*(a)+0(1) < loglog M (c+d)+0(1);

. suploglog Ml(a) sup loglog M (o + 8) o0+46
() 1.:1—1)2 inf a .}_,m inf (o0 + 8) o
_ lim YUP loglog M (o) )
- a—0a lnf G

(7) and (8) together imply (5), the conclusion sought.
THEOREM II. In Theorem 1 we have, in addition to (5), the following

conclusgion:
J1
(9) 11_2 S;;l; I_OM_(E)/M’ (o)) _ g )

Proof. The argument which follows is modelled on one originally
used by Vahron ([4], pp. 15-19) to prove the p-part of (9) in the case
Do = .

Using (2) and then (3), we obtain.

I

(10) long(o)+log[ Ml( ]

]< log M (o +8)—logd

T

= Jog M (o) + J w(x)dr—logd ,

where 6 is to be finally chosen in ferms of o as follows. The last expression
for ¢ fixed in the first instance and for varying 4, is least when 4 satisfies
the equation

(11) w(a+6)—%= 0.
w(o) being a monotonic increasing function of ¢, we get from (11):
%2 w(o)—>o0 a8 o-—>co,

while we get

log M'(o) +log [1 —

jﬂ%a)] < log M (o) + dw (o + 8)—logd
= log M (a) +1 +logw(o -+ 8) ,
choosing § at this stage so as to satisfy (11). Ience as ¢ —-o0

log M(o)—1log M (o) << O(1)+logw(o+9),
suplogw(oc+4d) o+d o

, . suplog[ M'(s)/ M (0)] -d)
(z)  hm oo e shm e eas o A
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where we use (4) in conjunction with the fact that §->0 as ¢ -~oc0. On the
other hand, by Lemma 3,

log[ M'(c)] M ()] = loglog M (o) —1logo,
or

(13) lim s‘up log[ MY(o)/ M (c)] S lim s:up loglog M (o) o

oo IDf o 7 geroo I0f o A

(12) and (13) together give us the desired conclusion (9).

Remark on Theorem II. A conjecture analogons to (9), for g.
and A,, assumes the form

lim S9P log[#{(a)/u(o)) _ ou

aroo DT o A
where there is no additional condition on {Az}.
Without such a condition, but assuming ¢ < co in the cage ‘lim

inf”, the present author has established the above conjecture in a more
general form, which will be published elsewhere.

CorROLLARY II. When o is finite, we have
(14) log M(o) ~ log M (o) .
And when 0 < 9 < oo, we have
(15) =1, o=o,
where T, w are respectively the type and the lower type of {(8) in the order o, i.e-

suplog M(s) =

It o0 o
and T, ' are the type and the lower type respectively of fi(s).

Proof. The part T = 1* of (15) is given by Rahman ([1], p. 138) as
a deduction from (14). Here it may be pointed out that (15) as a whole
is an obvious deduction from (14), while (14) itself is a deduction from
Theorem II, though Rahman has proved it directly ([1], pp. 139-140).
To effect the deduction last mentioned, it is enough to note that (9)
gives us, for o > o,(e) corresponding to any small ¢ > 0,

(A—¢)o l_log‘ M (o) (oe+¢)o
log MY(o) log M(a) ~log M(o)®

Then letting ¢ —+oco and using the fact that oflog M(o) = o(1), which
appears in (6), we immediately get (14).
TiroreM II'. If we extend (9), we have, for any positive integer j > 1,
},I_I,]; inf o Al
11%*
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Proof. The proof is like that of Theorem II, but uses (2') of Lemma 1’
instead of (2) of Lemma 1 and Lemma 2’ instead of Lemma 2. These
changes in the proof of Theorem II result in the replacement of (12) by

Tl - :
g SUP Log[ M (0)/ M (0)] _je

(129 Hm ;e . Si

A further change in the proof of Theorem II, required now, consists in
using Lemma 3’ instead of Lemma 3 and obtaining in place of (13):
) ‘ - ,‘
(13") lim "UP log[M(0)/ M (o)] >¢,
s—co 10T o jA
The proof is completed by combining (12’) and (13°).
My thanks are due to Professor C. T. Rajagopal for help in the prepa-
ration of this note.
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