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BREAKDOWN TIME DISTRIBUTIONS OF SYSTEMS IN SERIES

0. In the first part of this paper, due to the first author, the break-
down time distributions of systems consisting of 2, 3, 4, and 5 facilities
having independent breakdown processes with exponential distribution
of working and breakdown times are considered. The results of [3], where
it has been proved that the properly normalized distributions of working
and breakdown times tend with an infinitely increasing number of
facilities to the exponential distribution, are here strengthened. It is
shown in this paper that the differences between the limit distribution
and the exaet distributions for systems consisting of a small number
of facilities are relatively large. In the second part of the paper, due to
both authors, the Monte Carlo method has been used for calculating
the distributions of breakdown times in systems which congists of 2
and -+ facilities with exponential working time distributions and expo-
nential or deterministic breakdown time distributions. A comparison
of the results obtained in this way with those from theory indicates that
Monte Carlo methods may be with good results used in the dealt with
problenm. All calculations have been made by the second author on the
digital computer ODRA 1003 installed in the Department of Statistics
at the Higher School of Economiecs in Wroclaw, Poland.

1. Consider » facilities in series and let o™ (¢) denotes the breakdown
process of facility number k. Under a breakdown process of a facility
we understand a zero-cne valued stochastic process for which the working
times (i.e. the lengths of consecutive intervals for which o () = 1)
are identically distributed independent random variables, the breakdown
times (i.e. the lengths of consecutive intervals for which o® () = 0)
are also identically distributed independent random variables, and the
breakdown and working times arc independent of each other.

The breakdown process of facilities connected in series is defined

as the product
n

(1) a,(t) = [ ),

k=1
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and the breakdown process of facilities connected in parallel is defined

as
n

(2) Bu(t) = 1—[ ] (1—a®(1)).

k=1

It is worth noticing that one obtains the process f,(t) by interchanging
the terms “working” and “breakdown” in a system of facilities in series.
The breakdown time distributions found in the paper are thus working
time distributions for systems in parallel.

It has been proved in [3] that if in each process a®(t) the working
time has an exponential distribution with parameter A, the breakdown
time has an exponential distribution with parameter g, and the processes
a® (1) are independent then in the breakdown process a,(t) of the system
the working time is exponentially distributed with parameter ni and
the breakdown time Y, is a random variable such that the Laplace
transform ¢ (s) of its density satisfies the equation

n
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We have thus
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From (3) it is easy to calculate the moments of the breakdown times

1—ga(s) 1
(4 EY, = — = —(p"—1
(4) P (p )s
BY _1—ga(s)
n 9 n k
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It has been also shown in [3] that the normalized breakdown time

~

is a random variable whose distribution tends to the exponential
distribution with parameter one if » tends to infinity. The rate
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of convergence may be measured by the rate of convergence of
the variance of Y, to unity. For the particular case 21 =pu =1,

o) frame) ] 2 '
thus for p q 1/2 we have TABLE 1. Expected values
on__q and variances of the norma-
EY, == : lized breakdown time
n :
w | EYw | D*Tw
n 1 ! -
2" (‘") bl 1 : 1.000 | 1.000
- =k k 2 | 1500 | 1.222
DY, = (2" —1)2 —1. 3 j 2.333 | 1.367
4 | 3.750 | 1.441
The values of those quantities for different Z lg'igg i'iié
n are given in Table 1. From the table one 7 18.143 | 1.412
can see that the exponential breakdown time 8 31.875 | 1.372
of n facilities in series rapidly increases with 9 56.778 | 1.331
n and also that the variance of the mnor- 10 102.300 | 1.293
malized breakdown time tends to unity at 15 | 2184467 1 1.173
20 52428.750 1.120

a very slow rate.
The exact distributions of Y, may be found from (3). For
2 =pu=1 we calculate easily

n—-1

1— g (s) _ 2k§)
3 (’,j) $(s+2)... (s+2(k—1))(s+2 (k+1)) ... (s-+2n)

('“;1) (8+2) ... (s2k)(s+2(k+2))... (s+2n)

$

from which we obtain

r %k s+2 8+2
(7) go (8) = i cocov/ [ oL !
s24+4s+2 (s +0,5858)(s+3,4142)
* s2+6s+6 s+ 6546

(8) g3 (8) = 3 2 ¢ . ~ g ~ A6 . g ~ g W,

§°+ 9824208+ 6 (s+0,3542)(s+ 3) (s + 5,6458)

s3+12s24 388+ 24

(9) g3 (8) = — :

§* 416834 80s2+128s 424

$3+12s2+ 38s -+ 24

~ (84 0,2152) (s + 2,7056) (s + 5,2943) (s + 7,7848)

s* 4 20834+128s2+ 2808 +120
§° 4+ 258* 4+ 220834 800s2+1024s +120

(10)  g:i(s) =

s* 420834128521 2805 +120
(8+0,1299)(s+ 2,4936) (s +3) (s + 7,5064) (s +9,8701)

~
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It is known (see [2], p. 148) that if ¢ (s) is a rational function

where ¢,(s) = (s—s8;)(s—s,) ... (s—s,) and s; # s; for ¢ # j, then gf:(’s)
is the Laplace transform of the function

n

(11) pul) = 3 2o

kel Qn(sk)

We are interested in the distributions g, (y) of the normalized random
variable ¥,. We have, of course,

~ ok S
Gn(8) = ¢» (EYH)-

For n =2,3,4,5 the requirements justifying (11) are satisfied, thus

. e _
(12) Guy) = BY, 32 ) expleBY,0).

oy Qn Sk

From (7)-(10) we have after simple calculations

(13) Galy) ~ 0,758V | (756512
(14) 63(!/) ] 0,66676—0,3266U+6—7y+ 0766676_13’1734y’

(15) g4(y) ~ 0,64106—0,807111+ 1,23_10 6—10,14601/_}_
+1’23_10 e— 19,8540y _+_ 076‘110 e-— 29,19291/7

(16)  g5(y) ~ 0,6428¢ "W 1.1 5210615450 |-
41,8720 637 41,5210 674540 | (,6428 ¢~ 1196V,

The graphs of these densities are given in Fig. 1; those of the cumu-
lative distribution functions in Fig. 2. For the convenience of confron-
tation, the figures enclose also appropriate graphs of the exponential
digtribution. It is shown here once more that the limit distribution is
rather distant from the exact distributions. Table 2 gives the numerical
values of the exact cumulative distribution functions and densities of
breakdown time in systems consisting of 2, 3,4, and 5 facilities.
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Fig. 1. Density functions of the normalized breakdown time of systems consisting
of n facilities
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TFig. 2. Cumulative distribution functions of the normalized breakdown time of systems
consisting of » facilities
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Densities Cumulative distribution functions

6.0 0.0038 | 0.0047 | 0.0051 0.9943 | 0.9937 | 0.9936

n =2 n=3‘n:4in=5 n=2}fn=3 n=4 n=275
' 0.0051 | 0.9956 |
\

|
7.0 0016 0020 | 0023 | 0023 9982 | 9975 9972 . 9972
8.0 0007 0009 : 0010 0010 9992 9989 9988 | 9987
9.0 | 0003 0004 ; 0004 0005 9997 9995 9994 9994
10.0 0001 ; 0002 ;| 0002 | 0002 9999 9998 |, 9998 | 9997

2. The investigation of system breakdown processes is a typical
problem to solve with Monte Carlo methods. We have generated system
breakdown processes of systems consisting of identical facilities with
independent breakdown processes. The pseudo-random numbers 7, have
been obtained using a process described in [1] with the first number 7»,
from the interval [0,2%®) given in Dbinary presentation as follows 7,
= 001 00001011 1011 1011 1111 1010 0100 1101 111. The next random
number 7, ; is obtained as the middle 38 bits of the square of the pre-
ceding number r,. Exponentially distributed (with parameter 1) random
numbers z, have been calculated from z, = — Alog —QZ—

The breakdown process of »n facilities, i.e. the system breakdown
process, has been generated in the following way. We have assumed
that at the initial moment all facilities were in working order and that
their working times (till the first breakdown) were realizations of a random
variable having an exponential distribution with parameter A. The
processes have then been observed in the moments of state changes;
in every such moment we have registered for each facility its state and
the time left till the next state change in that facility. If in the given
moment for any facility the breakdown time was finished, the working
time had been generated, if the working time had finished a breakdown
time had been generated as a random number from the exponential
distribution with parameter . Parallelly to generating the processes
for all facilities, we have calculated the working and brecakdown times
of the whole system. The system’s working time is counted from the
moment of all facilities being in working order to the moment of the
breakdown of any facility. It is easy to prove that in models of such
a type the system’s working time is exponentially distributed with pa-
rameter nl. The experimental distributions obtained by simulation
were statistically consistent with that theorem. The system’s break-
down time is counted from the moment of the beginning of any breakdown
to the moment when all facilities are again in working order. This time
is nearly always a sum of time intervals between moments of change of
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Fig. 3. Cumulative distribution function of the breakdown time of a system consisting
of 2 facilities with exponential breakdown times
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Fig. 4. Cumulative distribution function of the breakdown time of a system consist-
ing of 4 facilities with exponential breakdown times
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Fig. 5. Cumulative distribution function of the breakdown time of a system con-
sisting of 2 facilities with constant breakdown times
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Fig. 6. Cumulative distribution function of the breakdown time of a system con-
sisting of 4 facilities with constant breakdown times
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state in one of the facilities which did not result in a state of all the
facilities being in working order.

In the simulation we have dealt, as in section 1, with facilities having
exponentially distributed (with parameter 1) working and breakdown
times. Two systems have been investigated, the first one consisting of
two, the second one of four facilities connected in series. Kach system
has been simulated { times, each time to the moment of completion of
the 250th system breakdown.

The simulated breakdown times served as basis for construeting four
empirical cumulative distribution functions for each facility. Then two
functions, the minimum and the maximum ones, have been found; they
are prescnted as boundaries of the marked region in Figs. 3 and 4. The
appropriate theoretical cumulative distribution functions taken from
Fig. 2 are also presented in, after a suitable change of units, Figs. 3-1.

A similar simulation has been performed for systems consisting
of facilities having exponential working time distributions with para-
meter 1 and deterministic breakdown time (of unit length) distributions.
Figs. 5 and 6 give a similar information as Figs. 3 and 4, the only diffe-
rence being that instead of the theoretical distribution there is a mean
empirical distribution taken from the four simulation runs.

Statistically, the theoretical and empirical graphs are the same.
This allows us to claim that the Monte Carlo method is suitable for sol-
ving our problem for different distribution parameters too.
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B. KOPOCINSKI i E. TRYBUSIOW A (Wroclaw)

ROZKLADY CZASU AWARII W SYSTEMACH URZADZEN 0 UKLADZIE
SZEREGOWYM

STRESZCZENIE

W pierwszej cze$ci pracy znaleziono rozklady czasu awarii w systemach zlo-
zonvch z 2, 3, 4 i 5 urzadzen o niezaleznych procesach awarii z wykladniczym roz-
kladem czasu pracy i czasu awarii. Uzupelniono tutaj wyniki z pracy [3], gdzie udo-
wodniono, Ze rozklady te po odpowiednim unormowaniu przy liczbie urzadzen ros-
nacej nieograniczenie daza do rozkladu wykladniczego. W tej pracy pokazano, Ze
w syvstemach zlozonych z matej liczby urzadzen odchylenia dokladnych rozkladdéw
od granicznego s3 stosunkowo duze.

W drugiej czes$ci pracy zastosowano metode Monte Carlo do znalezienia roz-
kladow czasu awarii w systemach 2 i 4 urzadzen z wykladniczym rozkladem czasu
pracy i z wykladniczym albo deterministycznym rozkladem czasu awarii. Poré6wnanie
wynikow uzyskanych ta metoda i rozkladow teoretycznych wskazuje na przydatnosé
metody Monte Carlo w omawianym zagadnieniu.

b. KOMOUMNHBCKH u 3. TPBIBYCEBA (Bpounas)

PACIIPEJAEJIEHUASAA BPEMEHHMN HEHCITIPABHOCTH B CUCTEMAX
YCTPOUCTB COEAUHEHHbBIX ITOCJEJIOBATEJBHO

PE3IOME

B mnepBoit yactin padoTH HaiifeHH pacnpejeleHUs BpeMeHUM HEeNUCIPaBHOCTH
CHCTEM KOTOPBIE COCTOAT U3 2, 3, 4 1 5 yCTPOHCTB ¢ HE3ABUCHMMEIMYI NIPOLEeCCAMU ABAPHH,
NMEIUX IO0KAa3aTreJbHHE paclpejeleHus BpeMeH paboTH M aBapuu. 3xech Mpo-
A0JeHBl nccaeaoBaHuA u3 paboTH [3], B KOTOpOil OHIIO JOKAa3aHO, YTO 3TH paclpe-
BeJeHHA TOCle COOTBEeTCTBYylouleil HODPMAJIM3AUMU CTPEMATCA K IOKA3aTEIbHOMY
3aKOHY paclpefeleHNA, KOrKa YMCI0 yCTpoilcTB GeckoHedHO Bo3pacTaeT. B Hacroameit
padoTe MOKAa3aHO, YTO B CHCTEMAX COCTOAMMUX M3 HeOOJBIIOI0 YUCIA YCTPOMCTB OT-
RJIIOHEHNA TOYHHX pacmpejeJeHNit OoT mpejleIbHOr0 OTHOCHTEJIBHO BEIHKH.

Bo Bropoit uyactu paGoTrn mnpumeHen MeTon, Monte Hapno k HaxomkjeHHIO
pacmpepfelnednii BpeMeH aBapHM B CUCTEMaX COCTOAIIMX M3 2 M 4 YCTpONCTB C IOKa-
3aTeJBHHIM pacnpefejieHHeM BpeMeHH paGoTHl U € IMOKA3aTeJbHHM MJIM JeTepMH-
HHCTHYECKMM pacnpejeieHreM BpemeHu aBapuu. CpaBHeHHMe pe3yJbTAaTOB IOIY-
YeHHHIX 3TUM METOAOM C TEOPETHYECKUMH yKa3hBaeT HA NMPHMEHUMOCTh MeToxa MoOHTe
Rapao B o6cysmennoit mpoGieme.



