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Let ry, r,, ... be a Rademacher sequence, ie. r; are independent ident-
ically distributed random variables: P(r;=1)= P(r; = —1) = 4. It is well
known (cf, for instance, [2], Chapter V, Section 8) that if a,,qa,,... is a
sequence of positive numbers such that ) a? < oo (this assumpnon
guarantees the convergence as. of ) a;r)), then E exp( 1(X a;r)) )< 7. for
every real t. In the present paper the existence of exponential moments of
order greater than 2 of sums of Rademacher series will be examined. The
question is when the inequality E exp (| a;r;|) < oo holds. We shall prove
the following

THEOREM. Let 0< q < 1. If a,, a,, ... satisfies the condition

i ai =0(n™9),

J=n+1

then for r < 2/(1—q) the mean value E exp(r | Z ir;|') is finite for every 1.

The Theorem is the generalization of Marcus result in [1] and the most
important part of our proof is also due to him. The special case a; =j™* is
considered in [1]. Our Theorem is also the strengthening of the following
theorem proved by Hoffmann-Jgrgensen in his unpublished paper:

If q is one of the numbers }, 1, 3, 2,... and a,, a,, ... satisfies the
condition

R A

Y af=o0(n"9,

j=n+1

then E exp (t] Z a;r)|*' ") is finite for every t.

Evndently, 2/(1 —q)>2(q+1) for 0<g<1 and our Theorem is
stronger.
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From now on we assume that a,, a,, ... is a sequence such that

x
2
a;>0 and 'Zlaj<oo.
J:

We shall use the following notation:
=Ya o= ) a o=) 4
j=1 j=n+1 i=1
Let us begin with the following three lemmas:
Lemma 1. E exp (t Y a;r)) < exp (12 6/2).
Lemma 2. P(Y a;r; > 1) < exp (—1%/20).
Lemma 1 is a well-known fact and Lemma 2 is its immediate
consequence.
Lemma 3. P(Y a;r; > 2s,) < exp (—s3/20,).
Proof. We have

P(Za,rj>23 Zar >s)+P(Z a;r; > s,).
j=n+1
The first term is equal to 0 and so Lemma 2 (applied to the sequence
FusieFyso. ... instead of ry, r,,...) gives us the required inequality.

Now, let us notice that to prove our Theorem it is sufficient to show
that its assumption implies the estimate o, = O(s, ") for every r < 2q/(1—q)
for n large enough. Indeed, assume that the last estimate is valid, i..
o, < As;" for some positive constant A and for large n. Without loss of
generality we may assume Zaj = 0. For every u sufficiently large there

exists n such that u—1 < 2s, <u. By Lemma 3 we have
P(Y.ajr;>u) < P(X a;r; > 2s,) < exp (—s7/20,)
and
exp (—s2/26,) < exp (—(24) "' s2*") < exp (—(24) "' [(u—1)/2]**")
< exp (—Bu**"

Evidently, the obtained tail probability estimate implies

¥
Eexp (| Y ary|*"") < o
i=1

Now. it is sufficient to notice that if r runs over the interval
(0. 24 (1—g¢)), then r+2 runs over (2, 2 (1—q)).

Proof of the Theorem. Let us consider in the series a; +a,+ ... the
following groups of terms:

a,+a+(as+ag)+(as+ ... +ag)+(ag+ ... +ae)+ ...
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The Schwarz inequality applied to the (p+2)-nd group gives

Ay, + oo+ S (a + ..o +al )R,

2P+ 1 2P+ 1

Now, using the assumption o, < An~9, we obtain

a + ... +a2p+l <(A°2_""'2”)”2 = AY2.op(1-q)2

2P+ 1
Hence

[4
Sppa1 Sap+ AV Y -2 poi-0er Iy
k=1

for some constant D > 0 (for instance, D = a, + A'2(2! 92 1)~ 1),
Let 2? <n< 2!, We have

6,0, <A 27ML Cel 2q0-gl e+ D] where C > ADP 00+ D)

Given r < 2g/(1—gq) it is enough to choose p so large that

% 5

_ >r.
—q p+1

This allows us to obtain ¢,< Cs,"” for 2? <n< 2**! where p=p, p+1,
p+2,..., ie. for every n> 2°. Thus the proof is complete.

Remark 1. The exponent 2/(1—gq), which appears in our Theorem, is
the best possible.

In fact, Marcus [1] shows that although the sequence a; = j --a/2
satisfies the condition ¢, = 0(n™%, we have E exp |Z“j ,| = 2 for every
r>2/(1-—q).

Remark 2. If the condition o, = O(n~!) is satisfied, then the random
variable Y a;r; has finite exponential moments of all orders.

Remark 3. If the condition ¢, = O (n™9) for some q > 1 is satisfied, then
Y a; <« and ) a;r; is a bounded random variable.

To prove this let us consider the following inequality which appears in
the proof of the Theorem:

14
szp+l $a1+A”2 Z zk(l—q)lz.
k=1

This is also true in the case ¢ > 1 and the proof needs no change. If ¢ > 1,
then the geometric series on the right-hand side of this inequality converges,
and hence the sequence of the partial sums s, of Y a; is bounded.

The author wishes to express his thanks to Professor Stanistaw Kwapien
for his help during the preparation of the paper.
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