COLLOQUIUM MATHEMATICUM

LI DEDIE A M. STANISLAW HARTMAN 1987

A SEMI-GROUP OF PROBABILITY MEASURES
WITH NON-SMOOTH DIFFERENTIABLE DENSITIES
ON A LIE GROUP

BY

PAWEL GLOWACKI (WROCLAW) anD ANDRZEJ HULANICKI (WROCLAW)

DEDICATED

TO PROFESSOR STANISLAW HARTMAN
IN APPRECIATION

FOR HIS TEACHINGS AND HIS COURAGE

The theory of convolution semi-groups of probability measures on a
Lie group, started with the paper of G. Hunt [6] in 1956, is now a well
established theory, cf. e.g. [4]). One of the major facts which contributed to
the development of the theory is that there is a deep analogy of the behavior
of the semi - groups of probability measures on, in general, non -commutative
Lie groups and the behavior of such semi-groups on R". This is already
reflected in the paper of Hunt where the structure of the infinitesimal
generator and its domain are proved to be very similar to the ones of a
semi-group on R" The analogy is so striking that many properties
formulated for the semi-groups of probability measures on a Lie group G, if
hold true in case G = R", are conjectured for the general case.

In this paper we show that there are limits to. this belief.

Let {u},~o be a strongly continuous semi-group of probability
measures on a Lie group G. Let A be the infinitesimal generator of it. The
domain of A contains CZ(G).

Suppose {4}, has the following properties:

W) = ut;

(ii) dp (x) = p,(x)dx and p,e L*(G);

(i) If X,, ..., X, is a basis of the Lie algebra of G, then for a constant
¢ and >0 [(XFX)l2<cAfllz+fll,2) for feC2(G), for all
j=1,...,n where (X*X)* is a fractional power of the non-negative
operator X* X.
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Since (ii) implies
*) pe N D(4",

cf. e.g. (1.13) below, (iii) means that p, allow some differentiability in all the
directions with the derivatives in L?(G).
Question. Do all the derivatives of p, exist and belong to L2(G)?

It is not difficult to see that if G is Abelian, the answer to this question
is “yes”. In fact, since X} X; and A are essentially self-adjoint on C®(G), by
the spectral theorem,

XtX;f = [4dE;(3),
0

PO

—Af = [AdEQ) f

0

for fe CZ*(G). Moreover, since both X?¥ X; and A are convolution operators
and the group is commutative, E;(M) and E(N) commute, whence (iii)
implies that for every k there is an / such that

(X X X8 £l < CUlASN+H D,
i=1

whence, by (), the answer follows.

The aim of this paper is to show that in the simplest case of a non-
commutative Lie group — the Heisenberg group — there is a convolution
semi - group of probability measures {4,},.,, which is stable in the sense of
[2], satisfies (i)(iii) but, by far, not all the derivatives of p, are in L2

Let G be the Heisenberg group, ie. G=R® as a manifold, the
multiplication being defined by

(%, 9, 2)(xX, y', Z) = (x+X', y+)', z+ 2 + xy).

Let X, Y, Z be the basis of the left -invariant Lie algebra of G corresponding
to the one-parameter subgroups

R3x—-(x,0,0e0G,
R>y—(0, y, 0egG,
R>z-(0,0, 2)eG.

X = Dl’
(%) Y =D, +xD,,
Z = D3,
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0 0 0
=— =—, Dy=—. Le
where D, pwe D, 3’ 3= t

A= —-X2+\Y],

where |Y| = (Y* Y)V2,

It is easy to verify that — A is the infinitesimal generator of a semi-
group of probability measures {4}, on G, and that y, = u¥, cf. eg. [5].
J. Cygan and A. Hulanicki observed that the measures g, have densities p, in
L*(G) and later P. Glowacki [2] proved that for some ¢ > O (iii) holds with
X, =X, X,=Y, Xy =Z. Thus p satisfy (i)—(iii) and following the analogy
of the behavior,of the semi-groups of probability measures on a Lie group
and on R" mentioned above, it has been conjectured that p,’s are infinitely
many times differentiable and all the derivatives belong to L2(G). Since it is
also true that the semi - groups generated by —(X* X)°—(Y*Y)®, 0 <a, b < 2,
have properties (i)—(iii), an attempt has been made to prove that they form
Poisson - like approximate commutative identities which are homogeneous for
irrational a/b, which among other things means that they are C® and their
derivatives decay fast at infinity. In fact, such commutative approximate
identities have been recently found in another way, cf. [3].

In this paper we show that, although the semi - group generated by — A
satisfies (i)—(iii), it is true that already X*p, does not belong to L?(G) which,
of course, also buries all the hope to produce Poisson-like commutative
approximate identities using semi-groups generated by —(X* X)°—(Y*Y)’.

As we have mentioned, the fact that the semi-group generated by — A4
satisfies (i)—(iii) is known. However we reprove it here presenting an elemen-
tary new proof.

Preliminaries. For t >.0 let

8(x, y,2) =(t"2x, ty, 1*1?2).

6, is an automorphism of G and

X(fo0d,) =tY2Xf 04,

Y(foé,) =tYfod,,

Z(foé,) =t3*Zf 04,.
Consequently,
(0.1) A(fod,) =tAfod, for every feCZ(G).

For (x, y, z2)eG we define unitary operators on L?(G) by
(0.2) My @ W) = eFET b (x +u)



134 P. GLOWACKI AND A. HULANICKI

and for Ae R\ {0} we let

(0 3) n(lx'ynz) = néul(x,y,z) if l > O,
Moy = Mo hpy i 4 <0.
Of course, n* is a unitary representation of G on L?(R).
For an feL'(G) we define
nk=[f(x, y, )nl,.,dxdydz.

For every AeR\{0} and feL'(G)nL*(G) =} is a Hilbert-Schmidt
operator and the following Plancherel formula holds:

(04) W2 = [ lInfllus|AldA.

Then, for f in L?>(G) and almost all 4, n} is Hilbert-Schmidt with the kernel
05)  ka(x, ) = U3 [£ (A2 (r—x), |1~ u, |4~ ¥22) e+ du dz.
For a bounded measure u on G the operator =} is defined by

my = [mlyndu(x, y, 2).

Let {u},~o be a strongly continuous semi-group of symmetric
probability measures on G and let P be the infinitesimal generator of it on
L*(G). For Ae R\ {0} we define n} to be the infinitesimal generator of the
strongly continuous semi-group of contractions {nj‘}, >0 on L?(R). Then —n}

is self-adjoint and positive, and C is its core, cf. e.g. [1].

The following characterization of the domain of P will be useful:
(0.6) A function f in L*(G) is in the domain of P if and only if npn} is
Hilbert—Schmidt for almost every A and

flimpmHlis 1Al dA < oo
Then
np, = mp T}

For a closable operator T we write T for its closure.
We note that

d
mh () = - 6 ),

ny ¢ () = iud (u),
nz W) = ¢ (u),
consequently,

dZ
mh ) = — -5 ) +ul $w).
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Elementary estimates.
(1.1) ProposiTioN. Let M and N be the following operators on L*(R):

Mo (u) = 1[—1.11(“)¢(“),

N¢(u) =(1[—1.11‘5)"(“)
and let M' =1—M, N' =1—N. There exists a constant ¢ such that
(1.2 (M'+N) ¢, ¢) = c(d, ¢).

Proof. Suppose (1.2) does not hold, i.e, there exists a sequence {¢,} of
functions in L?(R) such that ||¢,|| =1 and

(M’ ¢u9 ¢n)+(N’ ¢us ¢y|) - 0.

Consequently, since both summands on the left are non-negative, we have
lim |[M’' @,|| = lim ||N’ ¢,|| = 0. Thus

¢n=Mp,+M' ¢, with |[M ¢, —0
and
¢,=N¢,+N' ¢, with |[N'¢,|- 0.
This implies
¢, = MN¢,+¢, with |lg,|]| - O.
But MN is a compact operator, so there exists a ¢ with ||@]| = 1 such that
(1.3) ¢ =MN¢.

But this is impossible, since M, N are projections and so (1.3) implies that ¢
= M¢ = N¢ and, consequently, both ¢ and ¢ have support in [—1, 1].
(14) CoroLLARY. We have

lind @Il = cligll

for some constant ¢ > 0.
We notice that (0.1) and (0.2), (0.3) imply that

(1.5) 4 = |4 nd.
(1.6) ProrosiTiON. If feD .3y, then feD;, and
(L.7) 21| < C"|A>¥* 1.

Proof. Let feD 3y, Then, by (1.5)
e3> 73 il > 213372 |} gl = > |Imbu s

for almost every AcR\{0} and all ¢ in L2 (R), since, of course, ¢
=sgn A|A¥% ¢.
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Consequently, for almost every 4, nj,7; is Hibert-Schmidt and

"7t2n n}”Hs Sc 32 ”n;3n/2f”HS .

This, by (0.6), implies that feD,, and (1.7) holds with C = c 32,
(1.8) ProposiTioN. If feDy, then feDgn Dy D,, and

@) 1A < WA+,
i) 191 < CIIAfI,
(i) 12211 < I1Af])-

Proof. C®(G) is a common core for all the operators under
consideration, therefore (1.8) will follow as soon as we prove that the
estimates (i}—(iii) hold for fe C®(G). We have

WX2fIl = —(X2£, 1) < (AL N < NAFIZ +IIA11?
which proves (i). The same estimates give also
(1.9) lIinx oIl < link Sl + Il

for all AeR\{0} and ¢ in F(R).
Now, to prove (ii) and (iii) it is sufficient, by the Plancherel formula, to
show that for almost every 4 # 0 we have

(1.10) ”7'-';2f||rzis+“7f¢f”f|s < C“"ﬁf”fxs
for fe C*(G) which, in turn, is a consequence of
(1.11) I(n%)* @lI* +Ins ¢lI* < Clini 9>,  PeCE(R).

Since both sides of (1.11) are symmetric and homogeneous of the same
degree with respect to 4, it suffices to prove it for A =1 only. Let us
abbreviate writing n = n!. We have

Ing @lI* = llmk $lI* +limy) $lI* — 2Re (% ¢, mpy) ).

If € L(R), then ny¢ is in the domain of my, and my ¢ is in the
domain of ny. Moreover, a simple computation shows that
nix My @ () = mpy) nx P (u)+sgn ug (u).
Consequently,
lInk Bl + llmy PlI> < ||z Gl +ll7x Gl +lll1> < Climy G112,

the last inequality being a consequence of (1.4) and (1.9), and so (1) and (iii)
are proved.
(1.12) If ge Dy for sufficiently large N, then the weak derivatives D?g, D, g

and D3g of g are locally square integrable.
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Proof. By (*x) this is an immediate consequence of (1.6) and (1.8).

(1.13) ProrosiTiON. Let {},~0 be a strongly continuous semi-group of
symmetric probability measures on a Lie group G. Let P be the infinitesimal
generator of it on L*(G). Then P is self - adjoint and non - positive and for every
t>0, neN and feL*(G) f*y, is in the domain of P". If, moreover, all y, are
absolutely continuous with respect to the Haar measure on G and their
densities p, are square integrable, then p,’s themselves belong to the domain of
P" for every neN. '

Proof. Being an infinitesimal generator of a strongly continuous semi -
group of hermitian contractions on a Hilbert space the operator P is self-
adjoint and non - positive, so the first part follows easily from the spectral
theorem. Since p, = p,, * p,;2, the second assertion follows from the first one.

Theorems.
(2.1) There exist an N in N and a constant C > 0 such that for every g in D,y

2.2) 190, 0, 0) < C(Il4" gll +llgll)-

Proof. Let f be a fixed function in C*(G), such that f(0, 0, 0) = 1.
Let N be such that (1.12) holds. If ge Dy, then by the ordinary Euclidean

Plancherel theorem, we obtain
lg (0, 0, 0)) =|fg(0, 0, 0)]

< C'(IID3 (fa)lI> + 1D (fo)lI* + 1103 (f9)lI* + 11 fg11%) /2
which, by the Leibniz formula and (*#) leads to

19(0, 0, 0)) < C"(IX*glI*+1 ¥gll* +112° gII* + llglI*)*/2,

whence, by (1.8), we obtain-(2.2).
(23) Let {u),>o be the semi-group generated by — A. Then for every t >0
du, (x) = p,(x)dx, where p,e L*(G).

Proof. Let feL?(G). By (1.13), g = f *y, is a smooth vector for 4.
By (2.1),

1< )l =1g(0, 0, Ol < C(IA™(f * w)ll +11.f * pll) < C' Il £

Thus g, defines a continuous linear form on L?(G) and consequently it has a
square integrable density.

(24) CoroLLARY. We have
I1X2pll < CliApll, I¥pll < Clidpll, I(Z*2)'” pll < CllApll.

(2.5) Let A= X2%+Y?+Z? be a left -invariant Laplace operator on G. Then
for t >0 Ap,e C(G). In particular, p,e C*(G).
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Proof. By (1.8) and (24)

X2 p=X?pyz*py2€ Co(G),
VA b= Z? Dy2* Dy2€ Co(G).

Let Y =D,. Then Y’ com‘mutes with convolutions on the right, whence
YY’ P = ¥p,2%+ Y py2€ Co(G)

and, since Z is central,
ﬁpx = ¥p,2* Zp,,€ Co(G).

On the other hand,

Y2=YY'+XYZ,

whence Y2 p,eC(G).
(26) If f, Xf,..., X"*'feL?*(G), then for each ¢cL*(R) and almost all
AeR\{0} we have n}peC"(R).

Proof. By (0.4), for almost all 4, 1:} is Hilbert—-Schmidt with the kernel
k,(x, y). It follows from (0.5) that the kernel of n%;_is equal to a multiple of

. Xif
the weak derivative
0 J
(a—x—) k). (x’ y)

By an obvious induction, the proof can be reduced to the case n = 0.
Therefore what remains to be proved is that if K is a Hilbert—-Schmidt

operator on L?(R) with a kernel k such that the weak derivative a%k(x, y) is

square -integrable, then for every ¢ in L*(R), K¢ is a continuous function
which is an exercise in real variable.
(2.7) THEOREM. It is not true that for some t >0 X*p,e L*(G).

Proof. Suppose X*p,eL?(G). Then, since X?p,eL?*(G), we obtain
X3 p,e L*(G). Consequently we have

(2.8) D:» Xpn szu )& Di» X4P:EL2(G)-

Let 2e R\ {0} be such that according to (2.6) =, de C3(R) for every ¢ in
L*(R). Let ¢, ¢,,... be the orthonormal basis in L?>(R) consisting of
eigenfunctions of the Hilbert—Schmidt, self-adjoint operator nj‘. Then, of
course, ¢q, @, ... are eigenfunctions of

2

du?

A7 g = ——+ul =,
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By (2.8) and (2.6)

¢0’ ¢1’ <€ Cs(R)
On the other hand,

T, ¢n = ln d’m ’In '-'é 09 by (14)

Consequently,

— ¢n (U) = A, (1) +u| P, (u).
Hence ¢{> e C(R) only if ¢,(0) = 0. But since, by Sobolev’s inequality and (1.8),

1#(0) < C'(ll#’ll + @) < Clin, &l
for a constant C, the functional F defined on L?(R) by

F, ¢>=(nz"9)(0)

is bounded and

CF, ¢) =4, $,(0).

Thus, if ¢,(0)=0 for all n=0, 1, ..., we have F =0 which is impossible
since 77! maps L?(R) onto the domain of n; which contains %(R).
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