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ON RICCI-RECURRE.NT MANIFOLDS

BY
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1. Let M be a Riemannian manifold with (possibly indefinite) metric g.
By R,; and R;; we denote local coordinates of its curvature tensor and Ricci
tensor, respectively, and by R its scalar curvature. The Weyl conformal
tensor of M (dim M = n) is defined by

(1) Chip = Rhijh_n%z(th gij— Rujgix + Rijgn — Rix gnj) +
+—R—(ghkgij_ghjgik)-
(n—1)(n-2)
A tensor field T of type (p, q) on M is said to be recurrent if
(2 7*1"""’.'1..'..", T\ilmjpkl...kq,l = lemjpkl...kq Thmhpi,....-q,z,

where the comma indicates covariant differentiation with respect to the
metric g. Relation (2) states that at any point xe M at which T(x) # O there
is a (unique) covariant vector u (called the recurrence vector of T) which
satisfies the condition

3) T mipj, codgrk (x) = Til“jpjl wdq (%) . (x).

M is said to be Ricci-recurrent (conformally recurrent) if its Riccl tensor
(Weyl conformal tensor) is recurrent (cf. [1], [3] and [5]).

2. Roter [4] has proved that in a Ricci-recurrent space whose recurrence
vector does not vanish and is locally gradient the Ricci tensor fulfils the
identity
(4) R,‘sts =5Ru.

As we shall show below, this identity remains true even though the
recurrence vector should not be locally a gradient. But first we state a certain
new example of a Ricci-recurrent manifold whose recurrence vector is not
locally a gradient.
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Example 1. Let M be the Euclidean n-space endowed with the metric
g given by

gijdx dx) = Q(dx")? + kg dx*dx? + 2dx" dx",
where «, =2, 3,...,n—1 (n>4), [ky,] is a non-singular indefinite
symmetric matrix consisting of constants, Q = 24, x*x", and A4,,..., 4,_, are
constants such that A3+ ... +A2_; >0 and k* A, A; =0, [k*’] being the

reciprocal of [k,;]. We see that the non-vanishing Christoffel symbols of the
metric are the following

1 o n
= - =_¢ﬂ n =2Ax¢12 "’
%1 l} Ag X%, %l 1} k* Ag x", {1 1} (A, x*)* x

A ST R

Therefore, the non-vanishing components of the curvature tensor, the Ricci
tensor, and its covariant derivative are

Rlaul = Aw Rla = _Aa’ Rla.l = _Aa Aﬁ x*.
Thus the Ricci tensor does not vanish everywhere on M and satisfies the
Condition Rl'j.k = R,j l//k With 'pl = Ap xﬂ, l//a = .lbn = 0.
ProrosITION 1. Let M be a Ricci-recurrent manifold such that the set U

= {xe M|y (x) # 0} is non-empty, Y being the recurrence vector of the Ricci
tensor. Then identity (4) is fulfilled on M.

Proof. First we restrict ourselves to the set U. We have
) R = R,y
The conditions of integrability of equations (5) are
Rij (wk.l - '/’u;) = —R’ stu - st Rsikl .
Hence, by the covariant differentiation and (5), we get
R; j (‘/’k.xm -y t.lun) = —R/ stkl.m - st Rsiu.m-

Contracting this equality with g'™, putting & = g"™ (Vs im— V1.4m)> and using (5)
and the identity R%j; , = R;;x—R; ;, we obtain

(6) Rij& = — RS (Ryj¥s— Ry ¥)) — RS (R Y — Ry ).
But by (5) and the identity 4R ; = R we have Ry, = 3RY;, which reduces
(6) to the form

R R
(M Rié = (Ris Rks_i Rik)'/’j"' (st R,"-i Rjk)'/’i-
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We shall prove that £, =0 on U. To do this, assume that ¢, #0 at
some point of U and restrict considerations to this point. From (7) we can
easily deduce that the Ricci tensor takes the form R;; =o;y;+a;y; for a
certain non-zero covariant vector o, and, consequently, R = 2a,y°. Therefore,
(7) yields

(aiak\l’s'//s"'_wiwkasas—'aiék)'/’j""(ojak¢s¢s+¢jwkasas_ojék)'//i =0,
whence
(8) ojo Y ¥ +yY;¥0,06°—a;¢, = 0.

The last relation leads immediately to o;¢, = g,¢;. Hence o; = A;, 1 #0.
Therefore, R;; = A(&;¥;+¢;¢;) and R = 2A4,y°, which used in the identity
R&Y, = (R/2yY; gives Yy y¥* = 0. Formula (8) in virtue of the above equality
implies o; = py;. Consequently, o,0° = 0 and (8) takes finally the form g;¢,
=0, which is a contradiction. Thus & =0 on U.

Define a tensor field S on M by S;; = R, R —(R/2)R;;. By (7) and the
equality ¢, =0, the tensor S vanishes on U. Consequently, S is covariantly
constant on U. Clearly, it is covariantly constant at the remaining points of
M. In this case, therefore, S =0 everywhere on M, which completes the
proof.

Remark. The assertion of Proposition 1 can also be deduced from
Theorems 1-3 of Patterson [3]. However, our proof is simpler.

We say that the Ricci tensor of M is of constant rank p if the matrix
[R;;] has the rank p at any point of M. Note that if the Ricci tensor of a
Ricci-recurrent manifold is non-zero everywhere on M, then it has a constant
positive rank. Indeed, in this case the recurrence vector is defined on the
whole M and we can use [2], p. 153. In our Example 1 and Example 2
below the Ricci tensor is of constant rank.

THEOREM 1. Let M be a Ricci-recurrent manifold with vanishing scalar
curvature and Ricci tensor non-vanishing everywhere on M. Assume
additionally that the recurrence vector of the Ricci tensor does not vanish at
certain points of M. Then the assignment to each xe M of the set D, of all
vectors X € T, M given by X' = R, Y%, where Y e T, M, defines a p-dimensional
parallel and isotropic distribution D on M, where p < n/2 is the rank of the
Ricci tensor.

Proof. It remains to prove that D is parallel and isotropic. By the
equality R = 0 and Proposition 1 it is easy to check that R, R;* =0, which
implies the isotropy of D and p < n/2. On the other hand, using the relation
Ri;x = R;jy, we derive

Z'(R}) YY), =R (Z'Y,Y’+Z'Y*,)

for arbitrary vector fields Y and Z on M. This gives the parallelity of D and
completes the proof.
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Example 2. Let n and p be natural numbers such that n >4 and
1 <p<n/2; and indices i, j run over 1, 2,..., n, indices a, § over p+1,
p+2,..., n—p, and indices a, b over 1, 2,..., p. Let M denote the Euclidean
n-space endowed with the metric g given by

gijdx dx) =Y dx*(Qdx®+2dx""?* %)+ ¢, (dx%)?,

where e, = —1 or +1, Q is a function of x*! ..., x"~? only and such that
5% e, Q.5 is non-constant and non-zero everywhere on M (for instance,
Q0 = exp(x?*1)), the dot being the partial differentiation. The non-vanishing
Christoffel symbols of our metric are

o 1 n—p+a 1 -
= -—— dﬂ = —
{a a} 25 ed Q.ﬁ’ { a o } 2Q.a

(no summation over a). Therefore, the non-vanishing components of the
curvature tensor are

Raaﬂa = %Q.aﬂ’ Rabba = %51” €, Q.a Q.ﬂ (b # a)’

and, consequently, the non-vanishing components of the Ricci tensor and its
covariant derivative are those related to

Raa = %6” €q Q.aﬂ ’ Raa,a = Raa.a-
Thus on M we have R;;, = R;;y, with ¢, = (log|6” e, Q 44l)x-

3. As we know, in a Ricci-recurrent manifold the recurrence vector need
not be locally a gradient. However, it must be locally a gradient if the
manifold is additionally conformally recurrent. To see this, the following
lemma will be necessary:

LEMMA. Let 6,,..., 0y and w,,..., wy be two sequences of numbers which
are linearly independent as elements of the Cartesian space R". Let T,; and
S (A, B=1,2,..., N) be numbers such that Ty, = T g, S8 = Sps, and

9 Typoc+ Tpco 4+ Tea0p+Sspwc+Spc Wy +Scawp = 0.
Then there are numbers 0,,..., Oy for which

(10) Typ= —w40p—wpb,, Syp=0,0g+050,.

Proof. Take numbers X!,..., X" and Y!,..., YN so that oo X€ =1,
6c Y =0, oo X€ =0, and wc Y = 1. Transvecting (9) with X*X® X¢ we
obtain T,z X X8 = 0. Therefore, the transvection of (9) with X% X¢ gives
T.c X€ = Aw4 for a certain number 1. Consequently, if we transvect (9) with
X€, we find

(11) Typ = 0, 8p+wpcy

for certain numbers £,,..., &y. In a similar manner, but using transvections
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of (9) with Y’s, we conclude that

(12) Sap=0,405+050,
for certain numbers 6,,..., Oy. Now, transvecting (9) with X€ we get, by (11)
and (12),

w4 {¢p+0p+(Ec+0c) X ap} +wp {E4+0,+(Ec+0c) XCa,) = 0.
Hence &g+ 0+ (Ec+0c) X€ o5 = 0. On the other hand, the transvection of (9)
with 'Y€ and the use of (11) and (12) lead immediately to &Eg+05+
+(Ec+0c) YE wp = 0. By the linear independence, the above formulae imply
¢, = —0,, which together with (11) and (12) completes the proof.
The following well-known fact is a consequence of our lemma:

COROLLARY. Let 6, and T,z (A, B=1, 2,..., N) be numbers satisfying
the conditions 6?+ ... +63 >0, T,p = Ty,, and

(13) TABO'C+TBCGA+7;;AO‘B=0.

Then each T,g is zero.

Now we are in a position to prove the following

ProPOSITION 2. Let M be a Riemannian manifold of dimension greater
than or equal to 4 and let U, (respectively, U,) be the subset of M consisting
of points at which the Ricci tensor (respectively, Weyl conformal tensor) is non-
zero. Assume that on U, ‘

(14) Ru.(u] = Rij.ll - Rij.u = Rij Gx1
for a certain tensor field a, and on U,
(15) Coise,iim = Chiji bim

Jor a certain tensor field b. Then a; =0 everywhere on U, and b; =0
everywhere an U,.

Proof. The assertion is clear if the metric of M is definite. Indeed, it is
sufficient to transvect (14) (respectively, (15)) with R¥ (respectively, C**) and
apply the Ricci identity. Thus, in the sequel, the metric is assumed to be
indefinite.

The following identity, valid in any Riemannian manifold, will be
necessary in this proof:

(16) Ryijic.tim) + Rikim,tniy + Rimpi,jig = 0-
First, consider the set U,\U,. We have C,; =0, and by the Ricci

identity we obtain Cyj um = 0. Therefore, by (1) and (14) we get Ry (im)
= Ry ajm, Which used in (16) gives

Ryijx Gim~+ Rjxim Ghi + Rympi aj = 0.
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This identity, for a fixed point of U, \U,, is of the form (13), indices A4, B, C
being replaced by the pairs hi, jk, Im, respectively. Thus from Corollary 1 we
obtain g;; = 0 everywhere on U, \U,, since the curvature tensor is non-zero
at any point of this set.

In the second step, consider the set U,\U,. We have R;; =0, and by
the Ricci identity we obtain R;;uy = 0. This together with (15) and (1) leads
to Ryijnum = Cuijnbim, Which substituted to (16) gives

Chijk bim+ Ciiim bpi + Comni bj = 0.

This identity is of the form (13). Hence b;; = 0 everywhere on U,\U,.
Now we are in the set U, n U, if it is non-empty. By (1), (14), and (15)
we obtain

Riyiji,iim) = (Riijx — Chiji) @im+ Chijic bim,
which together with (16) gives
(17)  (Ruijk — Chijx) Qim + (Rjim — Cixim) @i + (Rimpi — Cimni) ajc +
+ Chijk bim + Cixtm bhi + Cimni bjx = 0.
Fix an arbitrary point of U; n U, and restrict considerations to this point.

Remark that (17) is of the form (9). First we show that a and b must be
linearly dependent. Indeed, otherwise, by our Lemma we would have

Chijk — Ruijk = by Cj+ b i

for a certain skew-symmetric tensor ¢, which in view of (1) can be written as
R
(18) thgij_thgik+Rijghk_Rikghj—n—_l(ghkgij—ghjgik)

= (n—2)(bp cjx + by cw).
Assume that R, X* X" =0 for any isotropic vector X. Then we have R;;
= (R/n)g;;, which reduces (18) to

m(ghk 9ij—9njgix) = bpi i+ bjx Chi-

Hence it is easy to check that R = 0, whence R;; = 0, a contradiction. On the
contrary, let X be an isotropic vector such that R, X* X" # 0. Transvecting
(18) with X* X* we obtain

RsrX:Xrgij

—JR.X— x.\x. XS XAX.—2(n=2b. Xc. X
R X0 3 X X R X5 X = 2002 X0, X



RICCI-RECURRENT MANIFOLDS 211

a contradiction. Thus a and b are linearly dependent. Suppose that b is non-
zero and a;; = Ab;;. From (17) it follows that

ARy +(1=2) Chiji} bim+ (AR jiim+ (1 = 2) Cipim) bpi + (AR ppi +(1 = 2) Cppii} b

=0.
By the Corollary, the last relation leads to ARy, +(1—4)Cyjy =0, which
simply yields a contradiction. Similarly, the tensor a cannot be non-zero,
which completes the proof of our proposition.

As a consequence of Proposition 2 we obtain the following

THEOREM 2. In a conformally recurrent and Ricci-recurent manifold of
dimension greater than or equal to 4 both the recurrence vectors are locally
gradients.

In [5] Roter has found, in points of a general position, the local
structure of a Ricci-recurrent and conformally recurrent manifold with the
recurrence vectors being locally gradients. Our Theorem 2 enables us to omit
the local gradient assumptions in his main theorem.
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