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In paper [5], we have introduced a class of commutative Banach
algebras which we have called ES-algebras (after the term “extension
from subalgebras”). A commutative Banach algebra A is said to belong
to the class ES (or is of type ES, written as A<ES) if for every
closed subalgebra A, = A every multiplicative linear functional defined
on A, can be extended to such a functional defined on the whole of A.
Theorem 1 of [5] states that a commutative complex Banach algebra
is of type ES if and only if each of its elements has a totally disconnected
spectrum.

In this paper, we extend the concept of IES-algebras onto non-com-
mutative complex Banach algebras, we study some properties of ES-
algebras, and, as an illustration, we prove that for every compact group G
the algebra L,(G), 1 < p < oo, is an ES-algebra. The following theorem
is a starting point for our considerations:

~ THEOREM 1. Let A be a complex Banach algebra with unit e. The
following conditions are equivalent:

(a;) Every commutative (closed) subalgebra of A is an ES-algebra.
(by) For every weA its spectrum o(x) ts totally discomnected.

(¢y) For every (closed) subalgebra A, = A, containing the unit e, we
have *

(1) G(4,) = G(4) ~ A,

where G(A) and G(A,) denote the groups of invertible elements in A and
in Ay, respectively.

Proof. (a,) = (b,). Since the spectrum of an element xeA is the
same in A as in a commutative subalgebra 4, c A which contains x
and the set {(z+1ie)~':z1-AeeG(A)}, and since A,¢ES, it follows, by
theorem 1 of [5], that o(x) is totally disconnected.
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(b;) = (a,). Let A, be a commutative subalgebra of A and let 4,
be a maximal commutative subalgebra of A containing A4,. Since the
spectrum of each element xeA, is the same in 4, as in 4, we have by
theorem 1 of [56], 4,¢ES. Consequently, 4,¢ES.

non (e,) = non (a,). Suppose that (1) does not hold. Then there
is a subalgebra A, < 4, and an element z,¢A4, invertible in A4, but
singular in 4,. If we denote by A, the subalgebra with a unity generated
by z,, then A, = 4,, and z, is singular in 4,. Let A, be a maximal com-
mutative subalgebra of A containing x,. We have 4, <« A, and z, is
invertible in A4,. Since x, is singular in A4,, there exists on A4, a multi-
plicative linear functional f such that f(x,) = 0. Clearly the funectional f
cannot be extended to a multiplicative linear functional on 4,, and so
A, ¢ES.

non (b,) = non (¢;). If (b,) does not hold, then for some z,eA the
spectrum o(xz,) contains a continuum. By lemma 1 of [5] there exists
an element z¢G(A) which is non-invertible in the subalgebra generated
by 2, and so (¢,) does not hold.

Theorem 1 gives a motivation to the following definition:

Definition 1. Let A be a complex Banach algebra with a unity.
It is called an ES-algebra if any one of equivalent conditions (a,)-(c,)
is satisfied in it.

In order to extend this definition onto algebras without unity we
recall the concept of quasi-regularity (cf. [3]). If A is a Banach algebra
with unity e, then (¢e—x)(e—y) = e is equivalent with sy—ox—y = 0,
and the last equation does not involve the unity. Writing 2oy = a2y —z—y,
we see that zoy = yox = 0 implies (e—x)~' = e—y. If there is mno
unity in A4, then zoy = yox = 0 implies that e— is invertible in 4,
obtained from A by adjoining the unity e. If for an xeA there exists
such a yed that xoy = yox = 0, then y is said to be a quasi-inverse
of x, and z is said to be quasi-invertible or quasi-reqular. Since the map-
ping # - e— 2 sends quasi-invertible elements onto invertible elements,
and at the same time it sends circle produet oy onto ordinary product
xy, it follows that the set Q(A) of all quasi-regular elements in 4 forms
a group under the circle multiplication zoy, and it is an open set in 4
(no matter whether there is a unity in A or not).

Since the spectrum of an element x in an algebra A without unity
is defined as the spectrum of x in A4,, where A4, is obtained from A by
adjoining a unity e, we may by above remarks, reformulate theorem 1
as follows:

THEOREM 2. In a complex Banach algebra A the following conditions
are equivalent:

(ay) Every commutative (closed) subalgebra of A is an ES-algebra.
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(by) For every xeA the spectrum o(x) is totally disconmected.
(cy) For every closed subalgebra A, = A we have

(2) Q(4,) = Q(4) ~ 4,,
where Q(A) and Q(A,) denote the groups of quasi-regular elements in A
and in Ay, respectively.

We can, in turn, give a general definition of a complex Banach
of type ES.

Definition 2. A complex Banach algebra is called an ES-algebra
if any one of equivalent conditions (a,)-(c,) is satisfied in it.

We prove now some properties of ES-algebras. First we prove that
a homomorphic image of an ES-algebra is again an ES-algebra.

THEOREM 3. Let A and A be two complex Banach algebras and let
AeES. If there exists a (continuous) homomorphism T of A onto ;1, then
AcES.

Proof. Let 4, and ;11 denote the algebras obtained from A and A
by adjoining unity e, and ¢, (we can do it even if 4 and A already possess
unities ¢ and é; in this case ¢ and 6 become idempotents in A, and A,).
We can now extend 7' to a homomorphism of 4, onto 411 by setting

T(x+ Aey) = Ta+ 2e,.
By theorem 5 of [2] we have
(3) 04, (T2) < o4,()

for every x in A, (we denote here by oy;(x) the spectrum of z in B in the
case when more then one algebra is involved). On the other hand, it is
easy to see that

04,(%) = 04(z) v {0}

for every xeAc A,. So, by formula (3) and (b,), o3(x) is totally discon-
nected for every weA, which means that A eES.

Remark. If A¢ES and T is a homomorphism of 4 onto a normed
algebra R, then the completion P of R need not to be an ES-algebra.
If we take the algebra A,(Z) of all a-Lipschitz functions defined on the
Cantor set E, we obtain an ES-algebra (cf. [6]). On the other hand, if T
is the identity mapping of A,(E) into C(E), then TA,(E) = C(E) is
not an ES-algebra.

As a corollary we obtain

THEOREM 4. Let A be a complex Banach, algebra, and AeES. If 1
i8 a two-sided closed ideal in A, then A[I<ES.
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THEOREM 5. Let A be the cartesian product of a finite number of com-
plex Banach algebras A,,..., A,. Then AeES, provided that A;eES,
1 =1,2,...,n.

Proof. If zeA, then z = (zy,...,%,), 2;¢d4;,2 =1,2,...,n, and

o(@) = U o4,(@:).

So, by (b,), o(x) is totally disconnected as a finite union of totally
disconnected compact sets.

We turn now to an example. Let G be a compact group and let L, (G)
be taken with respect to the normalized Haar measure on @. It is known
(cf e.g. [4]) that L,(G), 1 < p < oo, is a Banach algebra under the con-
volution

TxY = fw(t’lt)y(r)dr,

and we have |zxy|, < |¢|,|yl,, Where |x|, = |[[|z/°dl]'". We also have
L,(@) < L,(G), and

(4) 2], < |@lp

for every xweL,(G), p >1. We shall need in the sequel the following

LeEMMA. Let A, be a subalgebra of a complex Banach algebra A.
Suppose that for every xeA, the spectrum o4(x) is totally disconnected.
Then AgeES.

Proof. Since o, (x) is nowhere dense and fails to separate the complex
plane, we have, by [1], Chapter I1X, section 1, corollary 10, 0 4(%) = 0.4,(2)
for every xed,, and so A,¢ES.

THEOREM 6. Let G be a compact group, and 1 < p < oo. Then the
algebra L,(GQ) is an ES-algebra.

Proof. First of all we imbed L,(G@) in an algebra of operators. We
may consider elements of L,(G) as endomorphisms of L,(G), but, since
usually there is no unity in L,(G), the operator norm is usually non-
equivalent with the original norm in L, (G). So first we adjoin, if necessary,
a unity e to the algebra L,(G) and obtain in this way an algebra A,.
The elements of 4, are of the form x4 Ae, where e L,(G), 4 is a complex
scalar, and A4, is complete in the norm |z + A¢| = |z|,+ |1|. The algebra A,
can be now imbedded in the algebra A of all endomorphisms of A, and
the operator norm is there equivalent with the original norm in A4,.
It follows that

L,(G)c A, c A,

and the operator norm on L,(@) is equivalent with |-|,.
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Let 2 be a continuous function on @, and assume that z¢L,(G@) (and
this holds for every p > 1). On these conditions we shall show that the
operator generated by z on A4,, given by

(5) T+ e - z2xx+ Az
is a compact endomorphism of A4,. To this end consider the sets

E, = {gxxeLy(@) : e Ly(@), 2|, <1},
and
E. = {i eL,(G): |A| <1}.

Clearly, E,  is a compact set in L,(@), and so in 4,. We shall show
that E, is precompact. First we show that the functions in E, are equi-
continuous. In fact, since z is uniformly continuous, there exists, for
each ¢ > 0, a neighbourhood U of the unit element in G such that v 'veU
implies
(6) |2(u)—2(v)|] < e.

We have now
(7 |2xx(u)—2x2(v)] < flz t= u) —2(t'0)| |z ()| dt.

Let |z|, <1. Since (t™'u)~'(¢~'v) = v~ 've U, we have, by (4), (8)
and (7),
|2k w(u) —2xz(v)] < elz|, < elz|p <e,

and so the family E, is equicontinuous. We shall now show that E, is
a uniformly bounded family. By the Holder inequality we have

zxa(t) < [ l2(z 1) @ (2)|dr < J2lp|@lp < [2lq,

where 1/p+1/q = 1. It follows that E; is precompact in O(G) and a fortiori
in L,(@). Since the mapping (5) sends the unit ball in A, into the set

E,={st+y:x<E,yek,},

and since E is precompact in A4,, it follows that the operator of left
multiplication by z is a compact operator in 4. Since continuous functions
form a dense subset in L,(G), and since the set of all compact operators
in A is closed in the operator norm, it follows that L,(G) consists of com-
pact operators. Since the spectrum of a compact operator is at most
denumerable, it follows that o¢4(x) is totally disconnected for every -
zeLy(G). Applying now the lemma to L,(G) = 4, < A, we obtain the
desired conclusion.

Remark. Theorem 6 is clearly false in the case of p = oco.
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Theorems 1-5 remain true if we replace Banach algebras by complete
locally bounded algebras (p-normed algebras, for the definition see [6]).
We do not know whether the results of [6] and of this paper are true for
multiplicatively convex B,-algebras (cf. [6]). So we pose the following
question:

ProBLEM. Is it true that a commutative complex m-convex B,-alge-
bra is an ES-algebra if and only if the spectrum of none of its elements
contains a continuum? (P 654)

Here we mean by an ES-algebra an algebra A with the property
that every multiplicative-linear continuous functional defined on any
subalgebra of A can be extended to such a functional defined on the
whole of A.

Added in proof. A positive answer to P 654 has been given in [7].
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