CONCERNING NON-COMMUTATIVE BANACH ALGEBRAS OF TYPE ES

 $\mathbf{B}\mathbf{Y}$

W. ŻELAZKO (WARSZAWA)

In paper [5], we have introduced a class of commutative Banach algebras which we have called ES-algebras (after the term "extension from subalgebras"). A commutative Banach algebra A is said to belong to the class ES (or is of type ES, written as $A \in ES$) if for every closed subalgebra $A_0 \subset A$ every multiplicative linear functional defined on A_0 can be extended to such a functional defined on the whole of A. Theorem 1 of [5] states that a commutative complex Banach algebra is of type ES if and only if each of its elements has a totally disconnected spectrum.

In this paper, we extend the concept of ES-algebras onto non-commutative complex Banach algebras, we study some properties of ES-algebras, and, as an illustration, we prove that for every compact group G the algebra $L_p(G)$, $1 \leq p < \infty$, is an ES-algebra. The following theorem is a starting point for our considerations:

THEOREM 1. Let A be a complex Banach algebra with unit e. The following conditions are equivalent:

- (a₁) Every commutative (closed) subalgebra of A is an ES-algebra.
- (b₁) For every $x \in A$ its spectrum $\sigma(x)$ is totally disconnected.
- (c₁) For every (closed) subalgebra $A_0 \subset A$, containing the unit e, we have

$$G(A_0) = G(A) \cap A_0,$$

where G(A) and $G(A_0)$ denote the groups of invertible elements in A and in A_0 , respectively.

Proof. $(a_1) \Rightarrow (b_1)$. Since the spectrum of an element $x \in A$ is the same in A as in a commutative subalgebra $A_0 \subset A$ which contains x and the set $\{(x+\lambda e)^{-1}: x+\lambda e \in G(A)\}$, and since $A_0 \in ES$, it follows, by theorem 1 of [5], that $\sigma(x)$ is totally disconnected.

 $(b_1) \Rightarrow (a_1)$. Let A_0 be a commutative subalgebra of A and let A_1 be a maximal commutative subalgebra of A containing A_0 . Since the spectrum of each element $x \in A_1$ is the same in A_1 as in A, we have by theorem 1 of [5], $A_1 \in ES$. Consequently, $A_0 \in ES$.

non $(c_1) \Rightarrow$ non (a_1) . Suppose that (1) does not hold. Then there is a subalgebra $A_0 \subset A$, and an element $x_0 \in A_0$ invertible in A, but singular in A_0 . If we denote by A_1 the subalgebra with a unity generated by x_0 , then $A_1 \subset A_0$, and x_0 is singular in A_1 . Let A_2 be a maximal commutative subalgebra of A containing x_0 . We have $A_1 \subset A_2$ and x_0 is invertible in A_2 . Since x_0 is singular in A_1 , there exists on A_1 a multiplicative linear functional f such that $f(x_0) = 0$. Clearly the functional f cannot be extended to a multiplicative linear functional on A_2 , and so $A_2 \notin ES$.

non $(b_1) \Rightarrow \text{non } (c_1)$. If (b_1) does not hold, then for some $x_0 \in A$ the spectrum $\sigma(x_0)$ contains a continuum. By lemma 1 of [5] there exists an element $z \in G(A)$ which is non-invertible in the subalgebra generated by z, and so (c_1) does not hold.

Theorem 1 gives a motivation to the following definition:

Definition 1. Let A be a complex Banach algebra with a unity. It is called an ES-algebra if any one of equivalent conditions (a_1) - (c_1) is satisfied in it.

In order to extend this definition onto algebras without unity we recall the concept of quasi-regularity (cf. [3]). If A is a Banach algebra with unity e, then (e-x)(e-y)=e is equivalent with xy-x-y=0, and the last equation does not involve the unity. Writing $x \circ y = xy-x-y$, we see that $x \circ y = y \circ x = 0$ implies $(e-x)^{-1} = e-y$. If there is no unity in A, then $x \circ y = y \circ x = 0$ implies that e-x is invertible in A_1 obtained from A by adjoining the unity e. If for an $x \in A$ there exists such a $y \in A$ that $x \circ y = y \circ x = 0$, then y is said to be a quasi-inverse of x, and x is said to be quasi-invertible or quasi-regular. Since the mapping $x \to e-x$ sends quasi-invertible elements onto invertible elements, and at the same time it sends circle product $x \circ y$ onto ordinary product xy, it follows that the set Q(A) of all quasi-regular elements in A forms a group under the circle multiplication $x \circ y$, and it is an open set in A (no matter whether there is a unity in A or not).

Since the spectrum of an element x in an algebra A without unity is defined as the spectrum of x in A_1 , where A_1 is obtained from A by adjoining a unity e, we may by above remarks, reformulate theorem 1 as follows:

THEOREM 2. In a complex Banach algebra A the following conditions are equivalent:

(a₂) Every commutative (closed) subalgebra of A is an ES-algebra.

- (b₂) For every $x \in A$ the spectrum $\sigma(x)$ is totally disconnected.
- (c₂) For every closed subalgebra $A_0 \subset A$ we have

$$Q(A_0) = Q(A) \cap A_0,$$

where Q(A) and $Q(A_0)$ denote the groups of quasi-regular elements in A and in A_0 , respectively.

We can, in turn, give a general definition of a complex Banach of type ES.

Definition 2. A complex Banach algebra is called an ES-algebra if any one of equivalent conditions (a_2) - (c_2) is satisfied in it.

We prove now some properties of ES-algebras. First we prove that a homomorphic image of an ES-algebra is again an ES-algebra.

THEOREM 3. Let A and \tilde{A} be two complex Banach algebras and let $A \in ES$. If there exists a (continuous) homomorphism T of A onto \tilde{A} , then $\tilde{A} \in ES$.

Proof. Let A_1 and \tilde{A}_1 denote the algebras obtained from A and \tilde{A} by adjoining unity e_1 and \tilde{e}_1 (we can do it even if A and \tilde{A} already possess unities e and \tilde{e} ; in this case e and \tilde{e} become idempotents in A_1 and \tilde{A}_1). We can now extend T to a homomorphism of A_1 onto \tilde{A}_1 by setting

$$T(x+\lambda e_1) = Tx + \lambda \tilde{e}_1$$
.

By theorem 5 of [2] we have

(3)
$$\sigma_{\tilde{A}_1}(Tx) \subset \sigma_{A_1}(x)$$

for every x in A_1 (we denote here by $\sigma_B(x)$ the spectrum of x in B in the case when more then one algebra is involved). On the other hand, it is easy to see that

$$\sigma_{A_1}(x) = \sigma_A(x) \cup \{0\}$$

for every $x \in A \subset A_1$. So, by formula (3) and (b_2) , $\sigma_{\tilde{A}}(x)$ is totally disconnected for every $x \in \tilde{A}$, which means that $\tilde{A} \in ES$.

Remark. If $A \in ES$ and T is a homomorphism of A onto a normed algebra R, then the completion \overline{P} of R need not to be an ES-algebra. If we take the algebra $\Lambda_a(E)$ of all a-Lipschitz functions defined on the Cantor set E, we obtain an ES-algebra (cf. [5]). On the other hand, if T is the identity mapping of $\Lambda_a(E)$ into C(E), then $\overline{T\Lambda_a(E)} = C(E)$ is not an ES-algebra.

As a corollary we obtain

THEOREM 4. Let A be a complex Banach algebra, and $A \in ES$. If I is a two-sided closed ideal in A, then $A/I \in ES$.

THEOREM 5. Let A be the cartesian product of a finite number of complex Banach algebras A_1, \ldots, A_n . Then $A \in ES$, provided that $A_i \in ES$, $i = 1, 2, \ldots, n$.

Proof. If $x \in A$, then $x = (x_1, ..., x_n), x_i \in A_i, i = 1, 2, ..., n$, and

$$\sigma(x) = \bigcup_{i=1}^n \sigma_{A_i}(x_i).$$

So, by (b_2) , $\sigma(x)$ is totally disconnected as a finite union of totally disconnected compact sets.

We turn now to an example. Let G be a compact group and let $L_p(G)$ be taken with respect to the normalized Haar measure on G. It is known (cf e.g. [4]) that $L_p(G)$, $1 \leq p < \infty$, is a Banach algebra under the convolution

$$x*y = \int x(\tau^{-1}t)y(\tau)d\tau,$$

and we have $|x*y|_p \leq |x|_p |y|_p$, where $|x|_p = [\int |x|^p dt]^{1/p}$. We also have $L_p(G) \subset L_1(G)$, and

$$|x|_1 \leqslant |x|_p$$

for every $x \in L_p(G)$, $p \geqslant 1$. We shall need in the sequel the following Lemma. Let A_0 be a subalgebra of a complex Banach algebra A. Suppose that for every $x \in A_0$ the spectrum $\sigma_A(x)$ is totally disconnected. Then $A_0 \in ES$.

Proof. Since $\sigma_A(x)$ is nowhere dense and fails to separate the complex plane, we have, by [1], Chapter IX, section 1, corollary 10, $\sigma_A(x) = \sigma_{A_0}(x)$ for every $x \in A_0$, and so $A_0 \in ES$.

THEOREM 6. Let G be a compact group, and $1 \leqslant p < \infty$. Then the algebra $L_p(G)$ is an ES-algebra.

Proof. First of all we imbed $L_p(G)$ in an algebra of operators. We may consider elements of $L_p(G)$ as endomorphisms of $L_p(G)$, but, since usually there is no unity in $L_p(G)$, the operator norm is usually non-equivalent with the original norm in $L_p(G)$. So first we adjoin, if necessary, a unity e to the algebra $L_p(G)$ and obtain in this way an algebra A_1 . The elements of A_1 are of the form $x + \lambda e$, where $x \in L_p(G)$, λ is a complex scalar, and A_1 is complete in the norm $||x + \lambda e|| = |x|_p + |\lambda|$. The algebra A_1 can be now imbedded in the algebra A of all endomorphisms of A_1 and the operator norm is there equivalent with the original norm in A_1 . It follows that

$$L_p(G) \subset A_1 \subset A$$
,

and the operator norm on $L_p(G)$ is equivalent with $|\cdot|_p$.

Let z be a continuous function on G, and assume that $z \in L_p(G)$ (and this holds for every $p \ge 1$). On these conditions we shall show that the operator generated by z on A_1 , given by

$$(5) x + \lambda e \rightarrow z * x + \lambda z$$

is a compact endomorphism of A_1 . To this end consider the sets

$$E'_z = \{z * x \in L_p(G) : x \in L_p(G), |x|_p \leqslant 1\},$$

and

$$E_z^{\prime\prime} = \{\lambda z \; \epsilon L_p(G) \colon |\lambda| \leqslant 1\}.$$

Clearly, E_z' is a compact set in $L_p(G)$, and so in A_1 . We shall show that E_z' is precompact. First we show that the functions in E_z' are equicontinuous. In fact, since z is uniformly continuous, there exists, for each $\varepsilon > 0$, a neighbourhood U of the unit element in G such that $u^{-1}v \in U$ implies

$$|z(u)-z(v)|<\varepsilon.$$

We have now

(7)
$$|z*x(u)-z*x(v)| \leq \int |z(t^{-1}u)-z(t^{-1}v)| |x(t)| dt.$$

Let $|x|_p \le 1$. Since $(t^{-1}u)^{-1}(t^{-1}v) = u^{-1}v \in U$, we have, by (4), (6) and (7),

$$|z \cdot x(u) - z \cdot x(v)| \leq \varepsilon |x|_1 \leq \varepsilon |x|_p \leq \varepsilon$$

and so the family E'_z is equicontinuous. We shall now show that E'_z is a uniformly bounded family. By the Hölder inequality we have

$$|z*x(t)| \leqslant \int |z(\tau^{-1}t)| |x(\tau)| d\tau \leqslant |z|_p |x|_p \leqslant |z|_q,$$

where 1/p + 1/q = 1. It follows that E'_z is precompact in C(G) and a fortiori in $L_p(G)$. Since the mapping (5) sends the unit ball in A_1 into the set

$$E_z = \{x + y : x \in E'_z, y \in E'_z'\},\,$$

and since E is precompact in A_1 , it follows that the operator of left multiplication by z is a compact operator in A. Since continuous functions form a dense subset in $L_p(G)$, and since the set of all compact operators in A is closed in the operator norm, it follows that $L_p(G)$ consists of compact operators. Since the spectrum of a compact operator is at most denumerable, it follows that $\sigma_A(x)$ is totally disconnected for every $x \in L_p(G)$. Applying now the lemma to $L_p(G) = A_0 \subset A_1$ we obtain the desired conclusion.

Remark. Theorem 6 is clearly false in the case of $p = \infty$.

Theorems 1-5 remain true if we replace Banach algebras by complete locally bounded algebras (p-normed algebras, for the definition see [6]). We do not know whether the results of [5] and of this paper are true for multiplicatively convex B_0 -algebras (cf. [6]). So we pose the following question:

PROBLEM. Is it true that a commutative complex m-convex B_0 -algebra is an ES-algebra if and only if the spectrum of none of its elements contains a continuum? (**P 654**)

Here we mean by an ES-algebra an algebra A with the property that every multiplicative-linear continuous functional defined on any subalgebra of A can be extended to such a functional defined on the whole of A.

Added in proof. A positive answer to P 654 has been given in [7].

REFERENCES

- [1] N. Dunford and J. Schwartz, Linear operators II, New York 1963.
- [2] J. P. Kahane and W. Żelazko, A characterization of maximal ideals in commutative Banach algebras, Studia Mathematica 29 (1968), p. 339-343.
 - [3] C. E. Rickart, General theory of Banach algebras, Princeton 1960.
- [4] W. Zelazko, On the algebras L_p of locally compact groups, Colloquium Mathematicum 8 (1961), p. 115-120.
- [5] Concerning extension of multiplicative linear functionals in Banach algebras, Studia Mathematica 31 (in print).
- [6] Metric generalizations of Banach algebras, Rozprawy Matematyczne 47 (1965).
- [7] On m-convex B_0 -algebras of type ES, Colloquium Mathematicum (in print).

INSTITUTE OF MATHEMATICS OF THE POLISH ACADEMY OF SCIENCES

Reçu par la Rédaction le 18.12.1967