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0. Let X be a complex Banach space, and let G be a compact group.
Representation p: g—>A4, of @ in X is a homomorphism of G into GL(X),
the group of automorphisms of X. Representation ¢ is continuous if
for each zeX the function g—A4,(x) is continuous.

Representation g is called cyclic if there exists xeX such that finite
linear combinations of vectors 4,(x) with ge @ form a dense subspace of X.

A representation p is called essentially infinite-dimensional if its
restriction to some infinite-dimensional p-invariant subspace of X is
cyclic.

Let B be a family of all separable Banach spaces (we identify iso-
morphie spaces).

In the present paper we study properties of following subfamilies
of B: B,, — the subfamily of B consisting of all spaces admitting essen-
tially infinite-dimensional continuous representation of some compact
group G; B, — the family of all spaces admitting essentially infinite-
dimensional representation of some compact abelian group G; B, — all
spaces admitting cyeclic continuous representation of some compact
group G. Obviously, B, < B,, and B, = B.

It is natural to ask whether these inclusions are proper. We shall
prove (Theorem 2) that if X ¢ B, and X** is separable, then X is reflexive.
This allows examples of spaces which belong to B, ,\B, (e.g. the space
" of James).

We do not know the solutions of the following problems.

ProBLEM 1. Does B, = B, ? (P 867)

This problem is connected with the question whether each infinite
compact group has an infinite abelian subgroup.
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PrOBLEM 2. Does B = B_? (P 868)
Positive answers to these questions would have strong consequences,
since (Theorem 3) if X e B,,, then X has an unconditional basic sequence.
We recall that (e,) is called an wnconditional basic sequence in X if
each z in the closed linear span of the set {¢,};_, can be represented in
a unique way in the form z = Y ¢,e, and for each bounded sequence (7,)
n

the series > ¢,7,e, converges.
n

The author is indebted to Professor A. Pelczynski for helpful discus-
sions and suggestions.

1. In the following letters X, ¥ will be used for Banach spaces’
and letters G, H for compact groups. The short form “let p:G2>g—A4,
eGL(X)” will mean “let go: g— A, be a continuous representation of a com-
pact group G in a Banach space X”. We will denote the value of a linear
functional y* at a point # by (z, y*).

Let M (G) denote the convolution algebra of all finite, complex valued
Borel measures on @, and let L'(G) be its ideal of all measures absolutely
continuous with respect to the Haar measure on G. Let o: G2g— A4 ¢ GL(X).
To each ue M(G) we assign a linear operator A%: X—X by the formula

(1.1) A%(x) = [ A,(a)u(dg).
G

The mapping u—A¢ is a continuous homomorphism of M(@) into
L(X), the algebra of all bounded operators on X (cf. [1], p. 335). With
no loss of generality we may assume that ||[4,] = 1 for g @ and, therefore,
that the homomorphism x— A¢ has the norm 1.

For a compact group G let @ denote the set of all normalized contin-
uous characters of G. Let y,, 7,¢G. Since

0 if y; # %2
X1*¥ X2 = . '
o iy = %
the operators A¢ for x €@ form the family of projections such that |47
=1, and

0 if x # Xa

A2 0 A2 =
X1 X2 | Ail if 1= Xz

2. Definition 2.1. Let ¢:G>g->A4,eLG(X). We define the spec-
trum 8, of the representation ¢ as the subset of G containing all those y
for which A2 #0.

PROPOSITION 2.2. For any representation o the spectrum S, is not
empty (we assume here that dim X > 0).
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Proof. Let ye X, , # 0. Define the mapping ¢: L!(G)—X by putting
Q(f) = AS(x,). The range of @ is not {0}. By the Peter-Weyl theorem
([6], p. 74) we can find continuous function, a matrix coefficient m;; of
some irreducible representation z of @, such that @(m;;) # 0.

Let x, be the character of 7. Since y,*m;; = Am;;, where 1 = dim~v
is a positive integer, we have

AL oA (@) = A2 - (30) = Al (@) = 2Q ;) #0.
1, T 1,7 - ?

Hence Aj 0 and therefore y,e Q', q.e.d.
Let 0: G>g—A,cGL(X). We define X, as the smallest closed linear
subspace of X, containing all ranges of the operators A, for r€@, i.e.,

X, = span{A¢(z) for zeX and yG}.

ProrosiTION 2.3. X, = X.

Proof. Since X, is a p-invariant closed subspace of X, the represen-
tation ¢ induces, by the formula A, ([#]) = [4,(z)], a continuous repre-
sentation ¢ in the quotient space X /X, ([#] denotes the class of vector z
in X/X,).

Suppose that X  X,. Then, by Proposition 2.2, §; is not empty,
and hence, for some x,¢G,

[ 20, (e) dg = [ 10(0) 4, @) dg] 0.
G Q

But this would mean that 43 (x)¢X,, a contradiction.

Definition 2.4. Let o: G> g—>A,¢GL(X). The contragradient repre-
sentation o* induced by the representation p is the mapping G> g——>A;_1
QL (X*).

We shall need the following well-known (cf. [1], p. 335) equivalence:

PROPOSITION 2.5. Let ¢ be a representation of a compact group G in
a separable Banach space. The following two conditions are equivalent:

(a) o i8 continuous;

(b) o is weak measurable (i.e. for each xeX and x* X" the function
g—><CA,z, z*) 18 measurable).

PROPOSITION 2.6. Let o: Geg—>A,eGL(X), and let X* be separable.
Then g* is a continuous representation.

Praof. Let B, B*, B** be the unit balls in X, X* and X**, respec-
tively. Let («}) be a dense countable subset of B*. For each z**<B** and
each positive integer n there exists x, B such that

1
|<w,’:,w**>—<wn,:v,’:>]<; for k =1,2,...,n.
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Since |jz,l] <1, we get
By &> s (@*, &™) for a*eX”.
Putting here A;_,(z*) for z* we get

<A*—1(w*)7 w**> = lim <Aa—1(mn)’ a"*>'

Thus the function g—<{4,_,(z*), 2**) is measurable, and by Pro-

position 2.5 the representation p* is continuous.

Remark. Let G be the circle group (the group of the reals mod 2x)
acting via translations in the space L!(@). This is obviously a continuous
representation. Operators of a contragradient representation are also
translations in L*(@), the space of all measurable essentially bounded
functions. The contragradient representation is not continuous nor even
weakly measurable. This points out that the condition of separability of
X* in Proposition 2.6 is necessary.

Let ¢ be a continuous representation of G in X and ¢* be the contin-
uous conjugate representation in X*.

Let A% and A% be operators assigned to a measure x4 by formula (1.1)
and corresponding to representations ¢ and ¢* in X and X*, respectively.

For ue M(Q) define u*e M(@) by u*(4) = u(A~') for any Borel subset 4
of G. The *-operation is isometric involution of M (G@).

PROPOSITION 2.7. A% = (4%)*.

Proof is standard.

COROLLARY 2.8. If o is a continuous representation with the continuous

representations o* and o**, then S, = S,.. Moreover,
AT = (4™ for ye@.

Proof. Let ye@. Since AY" = (4%)* = (49", we get AL =0
iff A2 = 0.

THEOREM 1. Let ¢:G3g—~A,e GL(X) and let X** be separable. If
for each yeG the space A2(X) is reflexive, then X is reflexive.

The proof is based on the following

LEMMA 2.9. Let Y be a reflexive subspace of a B-space X. Let n: X—X
be a bounded projection from X onto Y. Let a**: X**—>X** be the projec-
tion, second conjugate to m, and let i: X—X** be canonical embedding.
Then iY = a** (X**).

Proof. Let z*: X*— X* be the operator conjugate to =. Let z*eX"*
and yeY. Since

x*y 1Y) =y, %) = {ny, 2*) = (Y, n*x*) = {y, Ra*},
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where R: X* > Y* denotes the restriction of functionals from X* to the
space Y, the weak * topology of ¢¥ nB** is the same as the weak topo-
logy of Y NB transported to 1Y NnB** via embedding i. Therefore, since
Y is reflexive, 1Y nB** is weak * compact. _

Hence to complete the proof it is sufficient to show that for each
e X*, 2** e B*™ na™(X**) and £ > 0 there is xe BNY such that

[(*, @**y — (%, iw)] < e
Since ¢B is weak * dense in B**, there is z,¢B such that
[Km* (2*), 2**) — @y, *(@*))]| < e.
Therefore, since x** = n**x**, we get for x = nx,
IK@*, @**) — (o™, 1x)| = [{w*, a**a**) — vy, ¢*)|
= [(r*a, @¥*y — @y, wt (@%)] < e.

Proof of Theorem 1. By Proposition 2.7, the representation p

is continuous. Clearly, ¢ X is p**-invariant. By Corollary 2.8 and Lemma 2.9,
o« < iX. Hence, by Proposition 2.3, i X = X**.

Let 0:G>g—~>A,eGL(X). It is known that if a subspace Y of X is

minimal g-invariant (i.e., if Y is p-invariant and has no proper g-invariant

subspéaces), then dim ¥ < oco. (The proof of this fact may be reduced to

the Hilbert space case by defining a p-invariant continuous Hilbert norm
on X.)

LeMMA 2.10. Let p: G2g—A,eGL(X) be a cyclic representation. Then
dim A%(X) < oo for each ye@.

Proof. Let =, be a cyclic vector for p. Since
AL(X) = A%(span (A, (20))peg) = SDAD(A20 A, (%0))56 = 5PAD (AL, (%0))jec)

where y,(h) = x(kg~'), and since characters are finite-dimensional (i.e,
dimspan(y,),.¢ < o), we get dimspan (Aga(wo)),,ea < oo,

THEOREM 2. Let ¢:G29—>A,eL(X) be a cyclic representation and
let X be separable. Then X is reflexive.

Proof follows by Theorem 1 and Lemma 2.10.

COROLLARY 2.11. Let i: X—X** be the canonical embedding. If di-
mension of the quotient space X**[iX is finite and X is separable, then X
_does not admit any cyclic representation of a compact group.

Remark. Let ¥ be a subspace of a B-space X, let ¥ have an un-
conditional basis (e,) with coordinate functionals (f,), and let = be a bound-
ed projection from X onto Y. Then X admits a non-trivial represen-
tation of any compact abelian group @, which is cyclic when restricted to Y.
In fact, let (x,)>°; be any countable subset of @ (in the case of G abelian
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continuous characters of irreducible representations are multiplicative,
i.e., they are homomorphisms of G into T, the multiplicative group of
complex numbers with module 1). The formula

4,(@) = D 1a(9)fu(@) €4 + 7 — ()

defines a continuous representation g—A4, of G in X having required
properties.

Let J be the space of James (cf. [2]), i.e., the space of all complex
sequences & = (£,) such that lim.{-' = 0 and

gl = sup {10, — &al2+ 2 gy — End? s
with the supremum taken over all finite sets {n,...,n,} of positive
integers.

Since J is separable and dimJ**/iJ = 1, we have, by Corollary 1.14,
J¢B,. It is known that J contains a complemented subspace with an
unconditional basis; hence J admits a non-trivial representation of any
infinite compact abelian group.

3. Let X be a Banach space, let ,,e X, f,e X", m =1, 2, ..., be a bior-
thogonal sequence, i.e. f,(z,) = 4.

Let X, be the subspace (not closed) spanned by (£,)m-.- For a given
sequence (7,,) of complex numbers let 4, be the linear (in general, unbound-
ed) operator on X, defined as

.A,,(a;') zznmfm(‘v)wm

If for each bounded sequence 7 = (7,) the operator A4, is bounded,
then (z,) is an unconditional basic sequence in X (cf. [3])."

Let G be a compact abelian group. A subset S of the dual group G
is called a Sidon set if for each bounded function f on G there is a meas-
ure ue M(G) such that f(y) = u(y) for yeS (g, as usually, denotes the
Fourier transform of u).

We recall the following theorem ([4], p. 126):

If G is a compact abelian group, then each infinite subset of G contains
an infinite Sidon set.

PROPOSITION 3.1. Let G be a compact abelian group and let o: G2 g—>A4A,
€GL(X). Then, for each ue M(GY and yG,

Ao AL = ji(x) 4.
Proof. This is a consequence of the formula 3(gh) = x(g) x(h), valid

for characters of abelian- group, and the fact that the mapping u— A4}
is a homomorphism. : /
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ProposITION 3.2. Let o: (29— A,eGL(X). The following two condi-
tions are equivalent:

(i) the representation o 1is essentially infinite-dimensional;

(ii) 8, s infinite.

Proof. The proof is similar to the case of the Hilbert space.

THEOREM 3. Let X be a Banach space, G a compact abelian group,
and let 0:G@>g—>A,eGL(X) be essentially infinite-dimensional. Then X
has an wunconditional basic sequence. '

Proof. By Proposition 3.2, 8, is an infinite subset of ¢, and hence
it contains an infinite Sidon set S.

Let w, €4} (X) for some sequence y,, of characters from 8. By Propo-
sition 3.1, for each ue M (G) we have

Aﬂ () = /A‘(x'm) Ly

Since § is a Sidon set, for each bounded sequenc’e (7)) of complex
numbers there is ue M (@) such that %, = u(y,) for all m, and hence the
operator A,, assigned to the sequence (7,,), is the restriction of 42 to the
space X,. Thus 4, is bounded and therefore (x,) is an unconditional basic
sequence.

Remark. Theorem 3 can be extended to other classes of compact
groups, e.g., to the class of compact Lie groups. (In this case for a given
essentially infinite-dimensional representation there is a compact abelian
subgroup such that restriction of A to this subgroup remains essentially
infinite-dimensional.)

We do not know whether the same is true for an arbitrary compact
infinite group. (P 869)
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