BANACH SPACES ADMITTING ESSENTIALLY INFINITE-DIMENSIONAL REPRESENTATION OF A COMPACT GROUP

 \mathbf{BY}

WOJCIECH WOJTYŃSKI (WARSZAWA)

0. Let X be a complex Banach space, and let G be a compact group. Representation $\varrho \colon g \to A_g$ of G in X is a homomorphism of G into GL(X), the group of automorphisms of X. Representation ϱ is continuous if for each $x \in X$ the function $g \to A_g(x)$ is continuous.

Representation ϱ is called *cyclic* if there exists $x \in X$ such that finite linear combinations of vectors $A_q(x)$ with $g \in G$ form a dense subspace of X.

A representation ϱ is called *essentially infinite-dimensional* if its restriction to some infinite-dimensional ϱ -invariant subspace of X is cyclic.

Let B be a family of all separable Banach spaces (we identify isomorphic spaces).

In the present paper we study properties of following subfamilies of $\mathbf{B}: \mathbf{B}_{\infty}$ — the subfamily of \mathbf{B} consisting of all spaces admitting essentially infinite-dimensional continuous representation of some compact group G; $\mathbf{B}_{\infty a}$ — the family of all spaces admitting essentially infinite-dimensional representation of some compact abelian group G; \mathbf{B}_{c} — all spaces admitting cyclic continuous representation of some compact group G. Obviously, $\mathbf{B}_{\infty a} \subset \mathbf{B}_{\infty}$ and $\mathbf{B}_{c} \subset \mathbf{B}$.

It is natural to ask whether these inclusions are proper. We shall prove (Theorem 2) that if $X \in \mathbf{B}_c$ and X^{**} is separable, then X is reflexive. This allows examples of spaces which belong to $\mathbf{B}_{\infty a} \setminus \mathbf{B}_c$ (e.g. the space of James).

We do not know the solutions of the following problems.

PROBLEM 1. Does $B_{\infty a} = B_{\infty}$? (P 867)

This problem is connected with the question whether each infinite compact group has an infinite abelian subgroup.

PROBLEM 2. Does $B = B_{\infty}$? (P 868)

Positive answers to these questions would have strong consequences, since (Theorem 3) if $X \in B_{\infty a}$, then X has an unconditional basic sequence.

We recall that (e_n) is called an unconditional basic sequence in X if each x in the closed linear span of the set $\{e_n\}_{n=1}^{\infty}$ can be represented in a unique way in the form $x = \sum_{n} c_n e_n$ and for each bounded sequence (η_n) the series $\sum_{n} c_n \eta_n e_n$ converges.

The author is indebted to Professor A. Pełczyński for helpful discussions and suggestions.

1. In the following letters X, Y will be used for Banach spaces' and letters G, H for compact groups. The short form "let $\varrho: G \ni g \to A_g$ $\epsilon GL(X)$ " will mean "let $\varrho: g \to A_g$ be a continuous representation of a compact group G in a Banach space X". We will denote the value of a linear functional y^* at a point x by $\langle x, y^* \rangle$.

Let M(G) denote the convolution algebra of all finite, complex valued Borel measures on G, and let $L^1(G)$ be its ideal of all measures absolutely continuous with respect to the Haar measure on G. Let $\varrho: G \ni g \to A \in GL(X)$. To each $\mu \in M(G)$ we assign a linear operator $A^\varrho_\mu: X \to X$ by the formula

(1.1)
$$A_{\mu}^{\varrho}(x) = \int_{G} A_{g}(x) \mu(dg).$$

The mapping $\mu \to A_{\mu}^{\varrho}$ is a continuous homomorphism of M(G) into L(X), the algebra of all bounded operators on X (cf. [1], p. 335). With no loss of generality we may assume that $\|A_{\varrho}\| = 1$ for $g \in G$ and, therefore, that the homomorphism $\mu \to A_{\mu}^{\varrho}$ has the norm 1.

For a compact group G let \widehat{G} denote the set of all normalized continuous characters of G. Let $\chi_1, \chi_2 \in \widehat{G}$. Since

$$\chi_1 * \chi_2 = \left\{ egin{array}{ll} 0 & ext{if } \chi_1
eq \chi_2, \ \chi_1 & ext{if } \chi_1 = \chi_2, \end{array}
ight.$$

the operators A_{χ}^{ϱ} for $\chi \in \widehat{G}$ form the family of projections such that $||A_{\chi}^{\varrho}|| = 1$, and

2. Definition 2.1. Let $\varrho: G \ni g \to A_g \in LG(X)$. We define the *spectrum* S_ϱ of the representation ϱ as the subset of \widehat{G} containing all those χ for which $A_{\gamma}^{\varrho} \neq 0$.

PROPOSITION 2.2. For any representation ϱ the spectrum S_{ϱ} is not empty (we assume here that dim X > 0).

Proof. Let $x_0 \in X$, $x_0 \neq 0$. Define the mapping $Q: L^1(G) \to X$ by putting $Q(f) = A_f^{\varrho}(x_0)$. The range of Q is not $\{0\}$. By the Peter-Weyl theorem ([5], p. 74) we can find continuous function, a matrix coefficient $m_{i,j}^{\tau}$ of some irreducible representation τ of G, such that $Q(m_{i,j}^{\tau}) \neq 0$.

Let χ_{τ} be the character of τ . Since $\chi_{\tau} * m_{i,j}^{\tau} = \lambda m_{i,j}^{\tau}$, where $\lambda = \dim \tau$ is a positive integer, we have

$$A_{\chi_{\tau}}^{\varrho} \circ A_{m_{i,j}^{\tau}}^{\varrho}(\boldsymbol{x}_{0}) = A_{\chi_{\tau} * m_{i,j}^{\tau}}^{\varrho}(x_{0}) = \lambda A_{m_{i,j}}(x_{0}) = \lambda Q(m_{i,j}^{\tau}) \neq 0.$$

Hence $A_{\chi_{\tau}}^{\varrho} \neq 0$ and therefore $\chi_{\tau} \epsilon S_{\varrho}$, q.e.d.

Let $\varrho: G \ni g \to A_g \in GL(X)$. We define X_ϱ as the smallest closed linear subspace of X, containing all ranges of the operators A_χ for $\chi \in G$, i.e.,

$$X'_{\varrho} = \operatorname{span}\{A^{\varrho}_{\chi}(x) \text{ for } x \in X \text{ and } \chi \in \widehat{G}\}.$$

Proposition 2.3. $X_{o} = X$.

Proof. Since X_{ϱ} is a ϱ -invariant closed subspace of X, the representation ϱ induces, by the formula $\tilde{A}_{\varrho}([x]) = [A_{\varrho}(x)]$, a continuous representation $\tilde{\varrho}$ in the quotient space X/X_{ϱ} ([x] denotes the class of vector x in X/X_{ϱ}).

Suppose that $X \neq X_{\varrho}$. Then, by Proposition 2.2, $S_{\tilde{\varrho}}$ is not empty, and hence, for some $\chi_0 \in \hat{G}$,

$$\int_{G} \chi_{0}(g) \widetilde{A}_{g}([x]) dg = \left[\int_{G} \chi_{0}(g) A_{g}(x) dg \right] \neq 0.$$

But this would mean that $A_{\chi_0}^{\varrho}(x) \notin X_{\varrho}$, a contradiction.

Definition 2.4. Let $\varrho: G \ni g \to A_g \in GL(X)$. The contragradient representation ϱ^* induced by the representation ϱ is the mapping $G \ni g \to A_{g-1}^*$ $\in GL(X^*)$.

We shall need the following well-known (cf. [1], p. 335) equivalence:

PROPOSITION 2.5. Let ϱ be a representation of a compact group G in a separable Banach space. The following two conditions are equivalent:

- (a) ϱ is continuous;
- (b) ϱ is weak measurable (i.e. for each $x \in X$ and $x^* \in X^*$ the function $g \rightarrow \langle A_{\varrho}x, x^* \rangle$ is measurable).

PROPOSITION 2.6. Let $\varrho: G \in g \to A_g \in GL(X)$, and let X^* be separable. Then ϱ^* is a continuous representation.

Proof. Let B, B^*, B^{**} be the unit balls in X, X^* and X^{**} , respectively. Let (x_n^*) be a dense countable subset of B^* . For each $x^{**} \in B^{**}$ and each positive integer n there exists $x_n \in B$ such that

$$|\langle x_k^*, x^{**} \rangle - \langle x_n, x_k^* \rangle| < rac{1}{n} \quad ext{ for } k = 1, 2, ..., n.$$

Since $||x_n|| \leq 1$, we get

$$\langle x_n, x^* \rangle_{\xrightarrow{n \to \infty}} \langle x^*, x^{**} \rangle$$
 for $x^* \in X^*$.

Putting here $A_{g-1}^*(x^*)$ for x^* we get

$$\langle A_{g-1}^*(x^*), x^{***} \rangle = \lim_{n \to \infty} \langle A_{g-1}(x_n), x^* \rangle.$$

Thus the function $g \rightarrow \langle A_{g-1}^*(x^*), x^{**} \rangle$ is measurable, and by Proposition 2.5 the representation ϱ^* is continuous.

Remark. Let G be the circle group (the group of the reals mod 2π) acting via translations in the space $L^1(G)$. This is obviously a continuous representation. Operators of a contragradient representation are also translations in $L^{\infty}(G)$, the space of all measurable essentially bounded functions. The contragradient representation is not continuous nor even weakly measurable. This points out that the condition of separability of X^* in Proposition 2.6 is necessary.

Let ϱ be a continuous representation of G in X and ϱ^* be the continuous conjugate representation in X^* .

Let A^{ϱ}_{μ} and $A^{\varrho^*}_{\mu}$ be operators assigned to a measure μ by formula (1.1) and corresponding to representations ϱ and ϱ^* in X and X^* , respectively.

For $\mu \in M(G)$ define $\mu^* \in M(G)$ by $\mu^*(A) = \overline{\mu(A^{-1})}$ for any Borel subset A of G. The *-operation is isometric involution of M(G).

Proposition 2.7. $A_{\mu^{\bullet}}^{\varrho^{\bullet}} = (A_{\mu}^{\varrho})^{*}$.

Proof is standard.

COROLLARY 2.8. If ϱ is a continuous representation with the continuous representations ϱ^* and ϱ^{**} , then $S_{\varrho} = S_{\varrho^{**}}$. Moreover,

$$A_{\chi}^{\varrho^{**}} = (A_{\chi}^{\varrho})^{**} \quad for \ \chi \in \hat{G}.$$

Proof. Let $\chi \in \widehat{G}$. Since $A_{\chi}^{\varrho^{**}} = (A_{\chi}^{\varrho^{*}})^{*} = (A_{\chi}^{\varrho})^{**}$, we get $A_{\chi}^{\varrho^{**}} = 0$ iff $A_{\chi}^{\varrho} = 0$.

THEOREM 1. Let $\varrho: G \ni g \to A_g \in GL(X)$ and let X^{**} be separable. If for each $\chi \in \widehat{G}$ the space $A_{\varphi}^{\varrho}(X)$ is reflexive, then X is reflexive.

The proof is based on the following

LEMMA 2.9. Let Y be a reflexive subspace of a B-space X. Let $\pi: X \to X$ be a bounded projection from X onto Y. Let $\pi^{**}: X^{**} \to X^{**}$ be the projection, second conjugate to π , and let $i: X \to X^{**}$ be canonical embedding. Then $iY = \pi^{**}(X^{**})$.

Proof. Let $\pi^*: X^* \to X^*$ be the operator conjugate to π . Let $x^* \in X^*$ and $y \in Y$. Since

$$\langle x^*, iy \rangle = \langle y, x^* \rangle = \langle \pi y, x^* \rangle = \langle y, \pi^* x^* \rangle = \langle y, Rx^* \rangle,$$

where $R: X^* \to Y^*$ denotes the restriction of functionals from X^* to the space Y, the weak * topology of $iY \cap B^{**}$ is the same as the weak topology of $Y \cap B$ transported to $iY \cap B^{**}$ via embedding i. Therefore, since Y is reflexive, $iY \cap B^{**}$ is weak * compact.

Hence to complete the proof it is sufficient to show that for each $x^* \in X^*$, $x^{**} \in B^{**} \cap \pi^{**}(X^{**})$ and $\varepsilon > 0$ there is $x \in B \cap Y$ such that

$$|\langle x^*, x^{**} \rangle - \langle x^*, ix \rangle| < \varepsilon$$
.

Since iB is weak * dense in B^{**} , there is $x_1 \in B$ such that

$$|\langle \pi^*(x^*), x^{**} \rangle - \langle x_1, \pi^*(x^*) \rangle| < \varepsilon.$$

Therefore, since $x^{**} = \pi^{**}x^{**}$, we get for $x = \pi x_1$

$$\begin{split} |\langle x^*, \, x^{***} \rangle - \langle x^*, \, ix \rangle| &= |\langle x^*, \, \pi^{**}x^{***} \rangle - \langle \pi x_1, \, x^* \rangle| \\ &= |\langle \pi^*x^*, \, x^{***} \rangle - \langle x_1, \, \pi^*(x^*) \rangle| < \varepsilon. \end{split}$$

Proof of Theorem 1. By Proposition 2.7, the representation ϱ is continuous. Clearly, iX is ϱ^{**} -invariant. By Corollary 2.8 and Lemma 2.9, $X_{\varrho^{**}}^{**} \subset iX$. Hence, by Proposition 2.3, $iX = X^{**}$.

Let $\varrho: G \ni g \to A_{\varrho} \in GL(X)$. It is known that if a subspace Y of X is minimal ϱ -invariant (i.e., if Y is ϱ -invariant and has no proper ϱ -invariant subspaces), then dim $Y < \infty$. (The proof of this fact may be reduced to the Hilbert space case by defining a ϱ -invariant continuous Hilbert norm on X.)

LEMMA 2.10. Let $\varrho: G \ni g \to A_g \in GL(X)$ be a cyclic representation. Then $\dim A^{\mathfrak{g}}_{\bullet}(X) < \infty$ for each $\chi \in \widehat{G}$.

Proof. Let x_0 be a cyclic vector for ϱ . Since

$$A_{\varkappa}^{\varrho}(X) = A_{\varkappa}^{\varrho} \left(\operatorname{span} \left(A_{\varrho}(x_0) \right)_{\varrho \in G} \right) = \operatorname{span} \left(A_{\varkappa}^{\varrho} \circ A_{\varrho}(x_0) \right)_{\varrho \in G} = \operatorname{span} \left(A_{\varkappa}^{\varrho}(x_0) \right)_{\varrho \in G},$$

where $\chi_g(h) = \chi(hg^{-1})$, and since characters are finite-dimensional (i.e, dim span $(\chi_g)_{g \in G} < \infty$), we get dim span $(A_{\chi_g}^{\varrho}(x_0))_{g \in G} < \infty$.

THEOREM 2. Let $\varrho: G \ni g \to A_g \in L(X)$ be a cyclic representation and let X be separable. Then X is reflexive.

Proof follows by Theorem 1 and Lemma 2.10.

COROLLARY 2.11. Let $i: X \to X^{**}$ be the canonical embedding. If dimension of the quotient space X^{**}/iX is finite and X is separable, then X does not admit any cyclic representation of a compact group.

Remark. Let Y be a subspace of a B-space X, let Y have an unconditional basis (e_n) with coordinate functionals (f_n) , and let π be a bounded projection from X onto Y. Then X admits a non-trivial representation of any compact abelian group G, which is cyclic when restricted to Y. In fact, let $(\chi_n)_{n=1}^{\infty}$ be any countable subset of G (in the case of G abelian

continuous characters of irreducible representations are multiplicative, i.e., they are homomorphisms of G into T, the multiplicative group of complex numbers with module 1). The formula

$$A_g(x) = \sum_n \chi_n(g) f_n(x) e_n + x - \pi(x)$$

defines a continuous representation $g \rightarrow A_g$ of G in X having required properties.

Let J be the space of James (cf. [2]), i.e., the space of all complex sequences $\xi = (\xi_n)$ such that $\lim_n \xi_n = 0$ and

$$\|\xi\| = \sup_{\{n_1, \dots, n_k\}} \left\{ |\xi_{n_k} - \xi_{n_1}|^2 + \sum_{i=1}^{k-1} |\xi_{n_{i+1}} - \xi_{n_i}|^2 \right\}^{1/2},$$

with the supremum taken over all finite sets $\{n_1, \ldots, n_k\}$ of positive integers.

Since J is separable and $\dim J^{**}/iJ = 1$, we have, by Corollary 1.14, $J \notin B_c$. It is known that J contains a complemented subspace with an unconditional basis; hence J admits a non-trivial representation of any infinite compact abelian group.

3. Let X be a Banach space, let $x_m \in X$, $f_m \in X^*$, m = 1, 2, ..., be a biorthogonal sequence, i.e. $f_m(x_n) = \delta_n^m$.

Let X_0 be the subspace (not closed) spanned by $(x_m)_{m=1}^{\infty}$. For a given sequence (η_m) of complex numbers let A_{η} be the linear (in general, unbounded) operator on X_0 defined as

$$A_{\eta}(x) = \sum_{m} \eta_{m} f_{m}(x) x_{m}.$$

If for each bounded sequence $\eta = (\eta_m)$ the operator A_{η} is bounded, then (x_m) is an unconditional basic sequence in X (cf. [3]).

Let G be a compact abelian group. A subset S of the dual group G is called a Sidon set if for each bounded function f on G there is a measure $\mu \in M(G)$ such that $f(\chi) = \hat{\mu}(\chi)$ for $\chi \in S$ ($\hat{\mu}$, as usually, denotes the Fourier transform of μ).

We recall the following theorem ([4], p. 126):

If G is a compact abelian group, then each infinite subset of \hat{G} contains an infinite Sidon set.

PROPOSITION 3.1. Let G be a compact abelian group and let $\varrho: G \ni g \to A_g$ $\epsilon GL(X)$. Then, for each $\mu \in M(G)$ and $\chi \in \widehat{G}$,

$$A^{\varrho}_{\mu} \circ A^{\varrho}_{\chi} = \hat{\mu}(\chi) A^{\varrho}_{\chi}.$$

Proof. This is a consequence of the formula $\chi(gh) = \chi(g) \chi(h)$, valid for characters of abelian group, and the fact that the mapping $\mu \to A_{\mu}^{\rho}$ is a homomorphism.

PROPOSITION 3.2. Let $\varrho: G \ni g \to A_g \in GL(X)$. The following two conditions are equivalent:

- (i) the representation ϱ is essentially infinite-dimensional;
- (ii) S_o is infinite.

Proof. The proof is similar to the case of the Hilbert space.

THEOREM 3. Let X be a Banach space, G a compact abelian group, and let $\varrho: G \ni g \to A_g \in GL(X)$ be essentially infinite-dimensional. Then X has an unconditional basic sequence.

Proof. By Proposition 3.2, S_{ϱ} is an infinite subset of G, and hence it contains an infinite Sidon set S.

Let $x_m \in A^{\varrho}_{\chi_m}(X)$ for some sequence χ_m of characters from S. By Proposition 3.1, for each $\mu \in M(G)$ we have

$$A_{\mu}^{\varrho}(x_m) = \hat{\mu}(\chi_m) \cdot x_m.$$

Since S is a Sidon set, for each bounded sequence (η_m) of complex numbers there is $\mu \in M(G)$ such that $\eta_m = \mu(\chi_m)$ for all m, and hence the operator A_{η} , assigned to the sequence (η_m) , is the restriction of A_{μ}^{ϱ} to the space X_0 . Thus A_{η} is bounded and therefore (x_m) is an unconditional basic sequence.

Remark. Theorem 3 can be extended to other classes of compact groups, e.g., to the class of compact Lie groups. (In this case for a given essentially infinite-dimensional representation there is a compact abelian subgroup such that restriction of A to this subgroup remains essentially infinite-dimensional.)

We do not know whether the same is true for an arbitrary compact infinite group. (P 869)

REFERENCES

- [1] E. Hewitt and K. A. Ross, Abstract harmonic analysis, vols. I and II, Berlin 1963.
- [2] R. C. James, A non-reflexive Banach space isometric with its second conjugate space, Proceedings of the National Academy of Sciences of USA 1951, p. 174-177.
- [3] М. И. Кадец и А. Пелчински, Фундаментальные последовательности, биортогональные системы и нормированные множества в пространствах Банаха и Фреше, Studia Mathematica 25 (1965), p. 297-323.
- [4] W. Rudin, Fourier analysis on groups, New York 1962.
- [5] A. Weil, L'intégration dans les groupes topologiques et ses applications, Paris 1953.

Reçu par la Rédaction le 7. 3. 1972