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ORIENTED RELATIVE EMBEDDINGS OF GRAPHS

0. It is generally known that, when a connected graph G is a 2-cell
embedded on a closed surface, any face of the embedding is bounded by a
closed walk in G. An interesting question is which closed walks appear as the
boundaries of embeddings. More exactly, given a set of (oriented) closed
walks W in G, is there a 2-cell embedding of G on some surface realizing W,
ie, such that each of the prescribed walks bounds a face of the embedding?
If 50, such an embedding will be called a relative embedding of G with respect
to W,

Similar questions have already been studied, even in connection with
unexpected applications. Goldstein and Turner [2] dealt, in fact, with relative
¢mbeddings of cubic Hamiltonian graphs with respect to a Hamiltonian
circuit, Their results are then used to answer some questions from combi-
natorial group theory. The same class of embeddings was investigated by
Marx [6] in the context of analytic functions. Another example is [11] where
Vo presents a necessary and sufficient condition for circuits in a planar graph
to be realizable in the plane. This is closely related to efficient algorithms
Constructing planar embeddings. There are also other approaches to real-
izabiljty. In [3], Section 8, the prescribed walks are not assumed to be closed,
and in [7] and [8] the authors study a vertex version of realizability.

In this paper we emphasize the analogy between the relative embeddings
and the embeddings in the usual sense. We show that some basic results on
relative embeddings, such as Edmonds’ combinatorial characterizations or
Duke’s interpolation theorem, can be obtained by an appropriate modifi-
Cation of known permutation techniques, preservmg the sp1r1t of their
Original proof. :

1. Preliminaries. Compact orientable 2-manifolds are referred to as
Surfaces. Moreover, on each surface a definite orientation is chosen; this
Makes the surface oriented. We define an oriented 2-cell embedding of a graph
as a 2-cell embedding on some oriented surface X in which the faces share
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the same orientation as X. Any edge of a graph is provided with an
orientation. The term arc will denote an edge with a specific choice of
orientation. The symbol x~! denotes the reverse of the arcx. By E(G) and
D(G) we denote the sets of edges and arcs of G, respectively. For each vertex
v of G, let D(v) be the set of all arcs at v, i.e, emanating from v.

This work makes. an extensive use of permutations. We write an
argument on the right of the permutation. Thus, the composition is to be
read from the right to the left. For a permutation n the symbol |1z| denotes
the number of disjoint cyclic factors of =.

Let G be a graph, and v a vertex of G. A local rotation at v is a cyclic
permutation P, of D(v). A rotation of G is the product

P=TIP,

of local rotations at each vertex v of G. Thus, P is a permutation on D(G).
Let @ be the permutation of D(G) which assigns x~! to any arcx of D(G).
The product Q = Pw will be called a corotation of G. It is well known how
rotations are induced by 2-cell embeddings (see, e.g., [12]). Note that the
permutation @~ ! corresponds to the face boundaries oriented consistently
with the orientation of the surface.

As observed, the boundary of any face of a 2-cell embedding of G is 2
closed walk in G. In the standard terminology, the term “closed walk” is
regarded as a certain alternating sequence of vertices and arcs emanating
from them. For our purposes it is more convenient to view walks as cyclic
permutations, as suggested by the correspondence above. More precisely, we
define a walk to be a cyclic permutation W of a subset D' of D(G) such that
for any ae D’ the terminal vertex of a is equal to the initial vertex of W (a)-
Defining a walk as a cyclic permutation we thereby assngned a fixed
orientation to it. Thus, each walk is closed and no its vertex is specified as 8
base vertex.

A set of walks W ={W,,..., W,} is called admissible if W, ..., W
appear as disjoint cyclic factors of a permutation of D(G). That is, no edge of
G it used in W more than once with the same orientation. This allows us to

identify the set of admissible walks W with the product H } (the empty
i=1
product is- the identity permutation).

In our approach to relative embeddings it appears convenient to employ
words. A word is an arbitrary (possibly cyclic) sequence of distinct elements
(symbols) of D(G). Cyclic words will always be written in parentheses.
Suppgse that 4 is a non-cyclic word. If B = CAD or B = (CAD) for some C
and D, then we say that A is a subword of B. In the case where both C and
D are empty we consider A to be a proper subword of (A). Obviously, the
relation “to be a subword of” is a partial ordering on an arbitrary set ¢
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words. Note that each cyclic word is a maximal element in this ordering.
If A=a,...a, is a word, we write oA for a; and Ao for q,. Note that the
Symbols -4 and Ao are defined for non-cyclic words only.

2. Realizability. An admissible set W = {W,, ..., W;} of walks in a graph
G is said to be realizable if there is an embedding i: G < X of G on an
oriented surface X with rotation P such that W, ..., W, appear as cyclic
factors of the corotation Pw. In this case we say that i is a relative embedding
of G with respect to the set W and write i: (G, W) < X. The faces of the
embedding i whose boundaries belong to W are inner and the remaining
ones are outer. Any embedding of G can be considered as a relative
embedding with W = @; in this case each face of the embedding is an outer
face. Thus we regard () as a realizable set.

Let G be a graph and W an admissible set of walks in G. Define
K(G, W) to be a 2-complex obtained from G by attaching a 2-cell to every
closed walk W, e W. Each 2-cell is given an orientation consistent with that of
the corresponding W,. Note that the cell complex K (G, W) need not be pure.
At the same time, the admissibility of W ensures that K (G, W) is a:subspace
of some generalized pseudosurface. It is easy to see that the set W is
realizable if and only if K(G, W) is a subspace of an oriented closed surface.

In what follows we show how to decide realizability in a simple
algebraic manner. In order to do this we associate with each vertex v of G a
set M (v) of words over the alphabet D(v) as follows. Let M (v) be the set of
all words 4 over D(v) which are maximal with respect to the following
Property: ab is a subword of A if and only if W(a™!) = b (recall that W is a
Permutation!). Topologically, the words in M (v) correspond to the connected
components of sufficiently small deleted neighbourhoods of v in K(G, W).
Observe that each symbol of D(v) is contained in exactly one word of M (v).
Note that for W = @ each word in M(v) has length 1. |

The above geometrical observation on realizability can now be formu-
12llted as: follows: ‘

' ProposiTioN 1. Let G be a connected graph and W an admissible set of
Walks in G. Then W is not realizable if and only if there is a vertex v in G such
that M(v) contains a cyclic word of length less than degv.

* Proof. Obviously, if some M (v) contains a cyclic word of length less
than degy, then K (G, W) cannot be a subspace of any closed surface.

Conversely, let M (v) contain no cyclic word of length less than degv for
%ach p in G. Then any cyclic permutation Q, of M (v) determines a cyclic
Permutation Q, of D (v), that is, a local rotation at v. It is a matter of routme
to check that the product

Q= l_[Qp

dﬁtermmes a relative embedding of G with respect to W.
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Let G be a graph and W a realizable set of walks in G. Define a local
relative rotation with respect to W at v as a cyclic permutation of words in
M (v). A relative rotation of G with respect to W is then the product of local
relative rotations over all vertices of G. '

Let i: (G, W) X be a relative embedding with rotation P. This
embedding induces a relative rotation with respect to W in the following
manner. For each vertex v define a permutation P, of M(v) by

P,(A) = B if and only if P,(Ao) = -B

when M (v) does not consist of a cyclic word, and
P, = identity

otherwise. Thus, oP,(4) = P,(4-) for a non-cyclic A. It can be easily seen
that this definition is correct. The desired relative rotation is then simply the
product

P=T[P,.

Note that if W =@, then P = P.

Conversely, if W is realizable, then any relative rotation with respect to
W induces a relative embedding of the pair (G, W), as described in the
second part of the proof of Proposition 1. It is clear that the permutations P
and P induce each other. This fact readily implies an extended form of 2
theorem usually attributed to Edmonds.

PrOPOSITION 2. Let G be a connected graph and W a realizable set of
walks in G. The oriented relative 2-cell embeddings of G with respect to W are
in a 1-1 correspondence with the relative rotations of G. .

3. Interpolation property. Ordinary 2-cell embeddings of graphs ar€
known to have the interpolation property in the following sense: if 8
connected graph G has 2-cell embeddings on surfaces of genera g and g, then
it has a 2-cell embedding on a surface of genus h for every h such that
g < h<g. This is a classical result of Duke [1]. As we shall see below, 2
similar property remains valid for relative embeddings. ‘

One way to prove this result is to reduce the problem to standard
techniques. We prefer here another approach which consists in direct ma- -
nipulating with relative rotations, preserving the way of thinking as in [9])-

Given a rotation P of G, let S, be a permutation of D(v) defined by

S,(a) = o (Pw)"?(a).

‘where n(a) is the least positive integer such that (Pw)™®*1(a) is also in D (V)
To compute the image of an arc a in S, one has to proceed along the
oriented boundary of the face containing the arc a until it enters the vertex ¥
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say, by an arc b. Then S,(a) = b~ !. The way S,(a) can be computed suggests
the term local circulation at v as an appropriate name for the permutation S,.
The product

s =TI,

over all vertices of G is a permutation of D(G) and is called a circulation of
G; obviously, S depends on P. Its usefulness resides in the fact that the
Number of faces incident with an arbitrary vertex v in the embedding given
by a rotation P can be expressed simply as |P,S,|, the number of cycles of
the composition of P, and S, (see [9]). Our aim is to obtain an analogous
formula for the number of outer faces at a specified vertex for relative
€mbeddings.

Let G be a graph and W a realizable set of walks in G. Assume that a
relative embedding of the pair (G, W) is given via the rotation P. Let S be
the circulation induced by P. The local relative circulation S, is a permuta-
tion of M(v) defined as follows

S,(A) = B if and only if §,(c4) =

when M (v) does not consist of a cyclic word, and
‘ S, = identity -
otherwise. Thus, S,(A)o = S,(cA4). The definition is nieaningful' even in the

Case where M (v) consists of a single non-cyclic word.
Put

$=TIS.

This permutation is a relative circulation of G with respect to W.
~ Note that, similarly as for P and P above the permutations § and §
induce each other. Again, if W =@, then § =8§.
' For a more convenient formulation of the next result, one more notation
appears to be useful. Denote by ¥, the subset of all vertices v of G for which
M (v) does not consist of a single cyclic word.

Now we are ready to formulate and prove a generalization of Stahl’s
Counting theorem ([9], Theorem 2).

ProOPOSITION 3. Let i: (G, W) o X be an embedding with the relative
:‘Otation P and let S be the corresponding relative circulation. Then the number
of outer faces of the embedding i incident with veV, is equal to |P,8§,).

~ For v¢V, the number of outer faces incident with v is, obviously, zero.

Proof. First, let us express the corotation Pw in the form Pw = QW.
Thuys, Q is a product of boundaries of the outer faces. Now, let us examine
Which symbols of D(G) appear in Q. Clearly, ae D(G) is in a cycle of @ if and
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only if its initial vertex v belongs to ¥, and there is some A M (v) such that
a =oA. In other words, Q contains only the initial symbols of maximal
words. In what follows, the set created by these symbols will be denoted
by I.

Further, we shall pursue how the permutation P, S, acts on I. Choose a
vertex veV, and take Ae M (v). Then

P,S,(c4) = P,(S,(A)s) = oP, §,, (A).

That is, for A, Be M (v) we have P,S,(-4) = oB if and only if P,§,(4) = B. It
follows that P, S, restricted to I is a permutation on I. Moreover, the cycles
of P,§, and those of P,S, restricted to I are in a 1-1 correspondence.

Now, assume that cycle D =(adbBcC...Z) is in Q, ie, D is the
boundary of an outer face of the embedding i incident with ve V,. Then
(abc..) is a cycle of P,S, consisting only of the arcs from I. However,
according to Stahl's counting theorem [9], the number |P,S,| is equal to the
number of faces incident with v. In view of the correspondence between the
cycles of P, S, restricted to I and the cycles of P,S, we conclude that |P, S|
is the number of outer faces incident with v.

Now we turn to the study of some modifications of local relative
rotations. Proposition 3 allows us to replace computations with rotations by
computations with relative rotations. This possibility leads directly to the
following result whose proof is analogous to that of Stahl ([9], Theorem 4).

ProrosiTiON 4. Let i: (G, W) < X be a relative embedding with a relative

rotation P. Let P be a relative rotation of (G, W) obtained by interchanging in
P, (veV,) two maximal words A, Be M (v), that is,

P, =(AB) P, (AB).

Let j: (G, W) < Y be a relative embedding given by P’ Then the numbers of
outer faces in i and j differ by =2, 0 or 2.

Since the relative rotation associated with a given relative embeddmg of
the pair (G, W) can be transformed into the relative rotation associated with
any other relative embedding of (G, W) by a finite sequence of alternations of
the same type as in Proposition 4, we have

THEOREM 1 (interpolation theorem for relative cmbeddmgs) Let G be d
connected graph and. W a realizable set of walks in G. Assume that the palf
(G; W) has a relative 2-cell embedding on surfaces of genera g and ¢', g < 4"
Then (G, W) has a relative 2-cell embeddmg on.a surface of genus h for every b
such that g < h<g'.

4. Miscellanea. For an arbitrary connected graph G and a realizable set
of walks W we define the relative genus y(G, W) of G with respect to W (or
the genus of the pdir (G, W)) as the minimum genus of the surface on whieh
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G has a relative 2-cell embedding with respect to W. By analogy one can
define also the maximum relative genus y, (G, W). Theorem 1 then asserts
that genera of surfaces on which G has a relative 2-cell embedding with
respect to W fill up the whole interval of integers between y(G, W) and
Ym(G, W).

It is possible to find examples which show that genus and relative genus
are sufficiently independent parameters. The same is true for the maximum
genus. '

It follows from Theorem 2 that if |M (v)] < 2 for each vertex v of G, then
surely y(G, W) = yp(G, W). In this case there is, in fact, a unique embedding
of the pair (G, W).

As an example, let us consider a cubic Hamiltonian graph G with the set
W containing a single Hamiltonian circuit H in G. In this simple case it is
- possible to determine exactly the value of y(G, H) = y) (G, H). As shown in
[2] and [7] this number appears to be useful even outside graph theory. In
both cases, y(G, H) was expressed as the one-half-rank of a certain (0, 1)-
matrix. We show how y(G, H) can be computed in a different but simple
manner using permutations only. Let a, be the cyclic permutation of vertices
of G induced by the orientation of H. Each chord of H can be regarded as a
transposition of its two end vertices. Let a, be the product of such transposi-
tions over all the chords of H. Note that this product is at the same time the
decomposition of a, into cyclic factors.

PROPOSITION 5. In the above notation, the number of outer faces of the
unique relative 2-cell embedding of a cubic Hamiltonian graph G with respect
to a Hamiltonian circuit H is equal to |a, a,|. Then

(G, H) = 5(1+n—|oy aa]) = F(lory| + o] =g ).

Proof. Let Pw = R H, where R is the product of cycles corresponding
to outer faces of the relative embedding of (G, H) whose rotation is P.
Observe that each cycle C of R has even length since in C a chordal arc e is
followed by an arc ¢ on H but with the orientation opposite to that of H,
and conversely. Let e and f be two chordal arcs at u and v, respectively. To
complete the proof it suffices to show that ee’ ff’ is a subword of a cycle in R
if and only if «, o, (1) = v. However, this is an easy task and we leave it to
the reader.

Another class of graphs with easily computable relative genus is that of
4-regular graphs with respect to oriented 2-factorizations. Let G be a
connected 4-regular graph. By an oriented 2-factorization F of G we under-
stand a 2-factorization in which each circuit has a definite orientation. This
enables us to consider each oriented circuit of F as a cyclic permutation of
its edges. Let W be the collection of all oriented circuits of F. According to
Proposition 1, W is always realizable: For the sake of convenience we speak

‘simply of relative embeddings with respect to the oriented 2-factorization F
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rather than with respect to W. Note that, again, the embedding of the pair
(G, F) is uniquely determined and, consequently, y(G, F) = (G, F).

Let F={F,, F,} be an oriented 2-factorization of G. Each oriented
circuit of F; induces a cyclic permutation of its. vertices. Let a; be the
permutation of vertices of G obtained as the product of all cyclic permuta-
tions corresponding to oriented circuits in F; (i = 1, 2).

Similarly as above, it can be shown that a formula analogous to that for
cubic Hamiltonian graphs holds also in this case.

PrOPOSITION 6. In the above notation, the number of outer faces of the
unique relative embedding of a connected 4-regular graph G of order p with
respect to an oriented 2-factorization F is equal to |a, a,]. Then

(G, F) = 1+3(p—|oty| —lota] — [ty a5]).

It turns out that the formulas in Propositions 6 and 7 express the
relative genus by means of what is known as the genus of a pair of
permutations o; and a,. This notion was introduced by Jacques [4] and
interpreted topologically by Stahl [10].

Let us finish with an example where the relative embedding is not
unique: the complete graph K, with respect to a specified circuit C. To
establish a formula for yy(K,, C), the edge adding technique of [5] may be
used. However, instead of taking a splitting tree (see [5] for the definition) as
a starting graph for this procedure, one has to take a suitable connected
unicyclic spanning subgraph containing C. We then have

ProposiTION 7. Let C be a circuit of the complete graph K, of order n.
Then

YM(KH’ C) = L]l’,'n(n—3)_].
In particular, yy(K,, C) is independent of the length of C.
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