ANNALES
POLONICI MATHEMATICI
XLVI (1985)

On G-foliations

by RoBert WoLak (Krakow)
Franciszek Leja in memoriam

Abstract. In this short note the author looks at how properties of a pseudogroup of
automorphisms of a given G-structure influence topological and geometrical properties of G-
foliations modelled on this G-structure.

0. Introduction. All the geometrical objects considered in this paper are
smooth, 1.e., of C® differentiability.

Let N be a g-manifold and I' a pseudogroup of diffeomorphisms of the
manifold N. For any open subset U of N by I'(U) we denote the set
{fel: domf = U}. We say that the pseudogroup I' has the property E,, k
any integer, if for any point x of the manifold the spaces {j~f: fel'(U,)
are equal for some sequence of open subsets U, such that Uy =N and
NU, = ix].

ExampLes. 1. Any pseudogroup of diffeomorphisms generated by a
group of global diffefomorphisms has the property E, for any k.

2. Let B(N, G) be a regular G-structure on a simple connected compact
manifold N for a group G of iinite type k. The pseudogroup I' generated by
the flows of infinitesimal automorphisms of this G-structure has the property
E,. In fact, the sheaf of germs of infinitesimal automorphisms of the G-
structure B(N, G) is constant (cf. [4]). Thus any germ of an infinitesimal
automorphism can be extended to a global infinitesimal automorphism of
B(N, G), hence any diffeomorphism from some flow, with the domain small
enough, can be extended to a global diffeomorphism, so the pseudogroup has
the property E,.

Let G be a closed subgroup of the linear group GL(g) of finite type k,
let B(N, G) be a G-structure on the manifold N. Let I" be a pseudogroup of
automorphisms of the G-structure B(N, G) having the property E,. Let F be
a I'-foliation on an n-manifold M in the sense of Haefliger (cf. [S]). Then we
have the following

THEOREM 1. The lifted foliation F-to the universal covering M of the
manifold M is simple, i.e., defined by a global submersion.
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THEOREM 2. Assume that the manifold M is compact. The growth of the
leaves of the foliation F is dominated by the growth of the fundamental group
7, (M) of the manifold M. '

THeOREM 3. The leaves of a complete foliation F have the common
“universal covering space. The space of leaves of the foliation F is homeomor phic

to the orbit space of some action of a group on a covering space of the mani-
fold N

We would like to express our gratitude to Robert A. Blumenthal for
providing the preprints of papers of his which have been the inspiration of
this note.

1. G-foliations. Let F be a G-foliation on the manifold M (cf. [2]). Then
the normal bundle N(M, F) of the foliation F admits a reduction of the
structure group to the group G. Denote by B(M, G; F) the reduction to the
group G of the linear frame bundle L(M; F) of the normal bundle N(M; F).

'On L(M;F) and B(M, G; F) we define an R%valued 1-form 6, the
fundamental form, as follows (cf. [7], [8]):

T,(L(M; F)“-T,, M - N, (M; F)2—Rs,
where n: L(M; F)— M is the natural projection. Then

R¥*0@=a"'0 for any aegG,
and
L,0=—A4-0 for any AeLie(G) =

On the manifold B(M, G; F) one defines a foliation F, of dimension
n—q as follows:

F, = {XeTB(M, G; F): ix0 =0, iydd = 0}
(cf. [7], [8D).

Let us choose a splitting s of the exact sequence

0— F—» TMs N(M, F)- 0.

Take any g-dimensional subspace H, at a point p in T, B(M, G; F) such
that its projection dnH, onto T,, M is equal to s(N,,(M, F)). From now on
we shall consider only such subspaces and call them the horizontal
subspaces.

Let us take two horizontal subspaces H; and H, at a point p of
B(M, G; F). Take any vector v of R% Then there exist the unique vectors
X,eH, and X,e H, such that §(X,) =6(X,) =v. Thus (X, —X,;) =0 and
dn(X,— X,) = 0. Therefore X, — X, = A* for some vector Aeg. In this way,
for any two horizontal subspaces H, and H, at a point p we define a linear
mapping Sy, g,: R?—g by putting Sy y,(v) =4 such that if X, eH,,
X,eH, and B(Xl)—B(X ) =vu, then X, —X, = 4%,
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If a linear mapping S: R?— g and a horizontal space H at a point p are
given we define another horizontal space H' at p in the following way:

H ={X"=X4+S@)*: 0(X)=v, XeH}.
Then

X—-X=Sw* and Sgy=S.

For any horizontal subspace H we can define the following mapping
cy: R A R?"— R
cyu nv)=(X AY,d0) for X; YeH such that §(X)=u, 6(Y)=v.

Then comparing the mappings cy and cy. defined for two different horizontal
subspaces H and H' at a given point p we have the following:

cguAV)—cgpunv)=<{X A Y,do)—<{X" A Y, dO)
={(X-X)A Y,d0>—(X' A (Y'-Y), dO)
= (Sun (W* A Y, d0)— (X" A Spy(v)*, d6)
= —3(San ) 0(Y)+Sg (v 0(X)
= %(SH’H (W) (v)— Sy y(v) (u)) =0Syu(u A v),

where 0 is the antisymmetrization operator.

Therefore for any pe B(M, G; F) the mappings cy define the unique
class ¢(p) in Hom(R? A R?, R%/0Hom(R? g). We call this tensor the
structure tensor of the transverse G-structure B(M, G; F). Since
JdHom(R?; g) is a vector subspace of Hom(R? A R%, R%, we can choose
a supplementary subspace C to dHom(RY%, g) in Hom(R? A R4, R). This
choice, at a point p of B(M, G; F), distinguishes a family of horizontal
subspaces H such that cyeC. If H, and H, are two such horizontal
subspaces at a point p

ey, (U AV)—cy, (U Av) =085y, (U Av)=0,
SO

Su,n, €9 —9g'"  the first prolongation of the Lie algebra g.
Thus the choice of C defines a G‘V-structure on L(B(M, G; F), F,), where

G = {(': ?d)eGL(R“+g): heg“’}.

We call this G'"-structure the first prolongation of the transverse G-structure
B(M, G; F) and denote it by B! (M, G; F). By induction, we define further
prolongations, i.e., B**! (M, G; F) is the first prolongation of the transverse
G*-structure B*(M, G; F). If the group G is of finite type k, after a finite
number k of steps, we get an {e}-structure B*(M, G; F), so the foliation F, is
transversely parallelisable.
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Remark. Let a transverse G-structure be projectible (cf. [7], [8]). With
a suitable choice of the splitting, if the diagram

B(M, G; F)—B(N, G)

M—L N
is commutative, we have the following equality for the structure tensors:

f* Cy =Cp-
2. Proof of Theorem 1. The proof is based on the following lemma:

LemMMma 1. Let G be a closed subgroup of the group GL(q) of finite type
and let I’ be a pseudogroup of automorphisms of a G-structure B(N, G). Then
the restriction mapping I'(U,)—> I'(Up,4+,) is bijective. In particular, any
automorphism of the G-structure belonging to I' can be extended to a global
one.

Proof. Let fe '(U,+,). Then the lift f to B*(N, G) preserves the {e}-
structure on B*(N, G), i.e., the parallelism {X,,..., X,} of B*(N, G) (cf. [10]).
Thus

(%) fexptX;,=exptX,f for any t and i=1,...,r
whenever exptX; is defined.

Let g be an element of I'(U,) such that jXg = j*f. Then for the lifted
mapping g to B*(N,.G) we have the equality g(p) =f(p) for any p over x.
The set A = {pe B*(N, G): f(p) =g(p)} is nonempty and closed. It is open
as well because of (x). The uniqueness is proved in the same way.

Let {U, f;, g;;} be a I'cocycle defining the given I'foliation. For ea¢h
gij» by Lemma 1, there exists the unique global diffeomorphism g;; of the
pseudogroup I' extending g,;.

Let H = {(L,f)), for xe U;, ge I'}, where ( ), denotes the germ at x. The
space H— M with the natural projection w and the sheaf topology admits a
C~*-manifold structure of dimension n. Any connected component of H is a
cover space of M. Let us take such a component M. Then there exists a
natural equivariant submersion, denoted by f, of M into N

Ma(Lgf,-), —gf;(x)e N.
The lifted foliation F to M is just the foliation defined by this submersion.

3. Proof of Theorem 2. Lemma 1 and the way the space H has been
constructed allows us to use precisely the methods of R. Blumenthal (cf. [1]).

We leave it to the reader to fill the details.
4. Complete G-foliations.

DerInITION. Let G be a closed subgroup of GL(q) of finite type k. We
say that a G-foliation is complete if the transverse parallelism of B*(M, G; F)
is complete and (oliation preserving.
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LEMMA 2. Let the k-th structure tensor of B(N, G) be zero, and let the
transverse parallelism be complete. Then the G-foliation F is complete.

Proof. Since (g* V)" = g® =0, the connections are determined by
their torsion tensors (cf. [4]). Therefore the torsion-free connection on
B*"!'(N, G) is unique, and therefore it determines a basic connection on
B*" (M, G; F). Thus the fundamental horizontal and vertical vector fields
on B* (M, G; F) define a transverse parallelism. One can easily prove,
using the same methods as in [7], that they are infinitesimal automorphisms
of the foliation F,.

Proof of Theorem 3. By Theorem 1 there exists a cover M of the
manjfold M such that the lifted foliation F is defined by a global submersion
f: M—> N. Thus the foliation F, of B* (M, G; F) is defined by the

submersion f*
k

B*"'(M, G; F) B*" (N, G)

Rye—
.

-N

The space B*"!(M, G;F) is a cover space of B*'(M, G:F) and the
foliation F, is the lifted foliation of F,. The foliation F, has closed leaves and
is transversely parallelisable by its global infinitesimal automorphisms, since
the foliation F, is. These vector fields are complete as well. By Lemma 1 of
[7] B~ (M, G; F) is a locally trivial fibre bundle over the Hausdorff
manifold B*~!(M, G; F)/F,. Thus the leaves of the foliation F have a
common universal covering space.

Since the transverse parallelism of F, is by infinitesimal automorphisms,
it projects to a complete parallelism of B*~' (M, G; F)/F, and is mapped by
the induced mapping f; onto the parallelism of B* !(N, G). On each
manifold B*"!(N, G) and B*~ (M, G; F)/F, we define a connection which
preserves the parallelism. Applying Theorem 3 of [6] we obtain that the
mapping f,: B* (M, G; F)/F,— B*"'(N,G) is a covering mapping.
Therefore we have the following commutative diagram

B (M, G; F)——B* L (M, G; F)/F,—"—B* (N, G)
I [* ; | =

M »M/F +N

where M/F is a T, manifold according to Palais [9]. Hence the mapping f is
a local homeomorphism. The next step is to show that f is a covering. To
prove this we need only to show that f has the property of lifting of curves.
Since B*'(N, G) - N is a principal fibre bundle, for any curve y in N there
is a horizontal lift 7 of the curve y to B*"'(N, G). Because f, is a covering
mapping, the curve 7 can be lifted to a curve 7 in B*~ (M, G; F)/F,. Thus
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the curve 77 is a lift of y to M/F. The choice of a point y in f~!(y(0)) forces
the following choices in the two liftings executed: 7~ !(y)ay and

fi(Peny(7(0). Therefore the manifold M/F is a Hausdorff manifold. We
denote the manifold M/F by N.

Since the mapping f is a covering mapping, we can lift the pseudogroup
I' to N — denote the lifted pseudogroup by I'. If the pseudogroup I' has the
property E,, then the lifted pseudogroup has this property as well. The
foliation F can be considered as a [-foliation.

Let us choose a point x, of the manifold M. Any loop at x, defines an
element of ['(N) in the following way. The loop y can be covered by a finite
number of sets UI s.--» Uy, Ui, = U, . We can choose a sequence of numbers

t,€[0,1], i=0,...,s5, such that to—O y(t)eU;, nU; i=1,...,5s—1,
t,=1. Then

l+l)

f;l (y(tl)) = gilizﬁz (7 (tl))‘
Because of the uniqueness of the extension of g, ;,, the choice of the global
automorphisms g; ;, does not depend on a choice of ¢,. Doing it step by step
we get

lj(y( )) gij'j'*'l J+‘(')’([}))
Thus

Gigiz i 1, Sy VW) = Giyiy - Gigiy Sy 01,

and the curve ¥ t—»(g,-liz...gij_l,-jj}j)(y(t)), tet;—y, t;], is the lift of the
curve y to H at (f;,)(y(0)). Therefore 7(1) = iyiy - Gig, Si) (). If ¥ is a
loop at x, homotopic to y we get

@iyiry - gi;i’l)(fil (x0)) = (Giyiy - gi,il)(fil (x0))-

By Lemma 1, gi\i,..-8iy; = iyiy---9ig,- Thus the correspondence defined
above induces a homomorphisms h of the groups

h: (M, xo) » Aut(B(N, G))
which is defined up to conjugation.

If we denote the im h by K, using the standard argument (cf. [1], [3]) we
can show that the space of leaves of the foliation F is homeomorphic to the
space N/K.

CoroLLARY. Let L be a leaf of the foliation F. Denote the corresponding
orbit on N by K;. Then

(i) L is proper iff K, is discrete,
(i1) L is closed iff K; is discrete and closed,
(i) L is dense iff K, is dense.

The proof is straightforward.
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