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Restricted homogeneity implies bi-additivity

by T. M. K. DavisoNn (Hamilton, Ontario, Canada)

Abstract. Let R be a commutative ring with identity, and let M be an R-module. Suppose
F: M xM — R satisfies

(1) F(x,)+F(x+y,z)=F(x, y+2)+F(y, 2)
and
2 F©,0)=0.

Two results are proved.

THEOREM 1. Let r, s be fixed elements of R such that rs is not a zero divisor, and r—s is an
invertible element of R. If F satisfies (1), (2) and

3 F(rx, sy) = rsF(x, ),
then F is additive in each variable.

THEOREM 2. Let R be the ring Z of rational integers. Let r, s be distinct non-zero integers. If
F satisfies (1), (2) and (3), then F is bi-additive.

Theorem 2 yields the result due to Jordan and von Neumann, that if f: M — Z satisfies
the parallelogram law, then F(x, y) =f(x+y)—f(x)—f(y) is bi-additive.

A commonly accepted definition of quadratic forms is the following (see
e.g. Jacobson [1], Definition 6.1), where R is a commutative ring with
identity, and M is a (unitary) R-module. A function f: M — R is a quadratic
form if

(i) f(rx) =r*f(x) for all reR, xeM,
(i) F: M xM — R is bilinear, where, for all x, ye M,
(1) F(x,y):=f(x+y)—f(x)—f(»). .

The second requirement can be separated into two parts: that F be homo-
geneous (of degree one) in each variable, and that F be bi-additive. It will be

shown that suitable homogeneity of F, and the fact (a consequence of its
definition by (1)) that F satisfies

(2) F(x’ )’)+F(x+)’, z)=F(x, Y+Z)+F(y, Z)
implies that F is bi-additive.
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The particular situation which motivates and illuminates our treatment
is the deduction of bi-additivity from the parallelogram law (cf. Jordan—von
Neumann [2], Theorem 1). Suppose f: M — R satisfies

3) S+ +f(x~y) =2 (x)+2f (»)

and 2 i1s not a zero divisor in R, then F satisfied the partial homogeneity
condition

4) F(x, —y) = —F(x, y).
Bi-additivity of F is proved in

ProPosiTION 1. Let R be a ring in which 2 is not a zero divisor. Let M be
an R-module and suppose F: M x M — R satisfies (2) and (4). Then F is bi-
additive.

Proof. Substitute —z for z in (2) to obtain

&) F(x, )+ F(x+y, —2) =F(x, y—2)+F(y, —2).
Add (2) and (5), and use (4) to deduce that
(6) 2F(x, y) = F(x, y+2)+F(x, y—2z).

In (6) interchange y, and z, and add the resulting equation to (6) to deduce
(using (4) again) that

(7) 2F(x, )+ 2F (x, z) = 2F (x, y+2).

Since 2 is not a zero divisor, (7) yields the additivity of F in the second
variable. A further use of (2) yields the additivity of F in the first variable.
Hence F is bi-additive.

This result is generalized in

ProrosITION 2. Let r, s be fixed elements of R such that rs is not a zero
divisor. If F: M xM — R satisfies (2)

(8) F(rx, sy) =rsF(x, y)

and

©) F(0,00=0

then

(10) F(x+ty, z) = F(x, 2)+ F(ty, 2)

for all x,y, ze M, where t.=r—s.

Remark. If rs—1 1s not a zero divisor, then (9) is a consequence of (8).
If F satisfies (2) and (8), then F— F(0, 0) satisfies (2), (8) and (9).
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Proof. In (2) replace x by rx, y by rsy, and z by sz to obtain
(11) F(rx, rsy)+ F(rx+rsy, sz) = F(rx, rsy+sz)+ F (rsy, sz).
Simplify (11) using (8) and cancel the rs factors resulting to deduce that
(12) F(x, ryy+F(x+sy, z) = F(x, ry+2z)+ F(sy, z).
However, writing ry for y i (2) yields
(13) F(x,ry)+F(x+ry, z) = F(x, ry+z)+ F(ry, 2).
Subtracting (12) from (13), and using the notation r:=r—s we have
(14) F(x+sy+ty, z)—F(x+sy, z) = F(sy+ty, z)— f (sy, 2).
Set x = —sy in (14), and use the fact that F(x’, 0) = F(0, z') = 0 by (9) and
(2), to obtain F(sy+ty, z)—F(sy, z) = F(ty, z); so (14) can be rewritten
(15) F(x+sy+ty, z2)—F(x+sy, z) = F(y, 2).
Finally in (15) replace x+sy by x to deduce (10).

CoRroLLARY. Suppose F satisfies (2), (8), and (9); and r—s is an invertible
element of R, then F is bi-additive. In particular, if R is a field with at least 3
elements and F satisfies (2), (8) and (9) for a pair r #0, s #0, r # s, then F is
bi-additive.

Proof. Write 'y for y in (10).

If one considers the corollary applied to r = 1, s = — 1 one sees that one
has to assume that 2 is invertible to deduce the additivity of F, whereas in
Proposition 1 all one requires in that 2 not be a zero divisor. It seems that
the fact that r and s are in the subring of R generated by 1 is critical, as
is shown in the next (and final) result.

ProposiTiION 3. Let r,s be fixed elements of Z (the ring of rational
integers) such thar rs # 0, and r # s. If F: M xM — Z satisfies (2), (8) and (9),
then F is bi-additive.

Proof. We can assume that |rs| > 1, as rs = 1 violates the assumption
r+#s, and rs = —1 is taken care of in Proposition 1.

We exploit (10) by writing {f:=r—s as usual),
(16) rsF(x, y) = F(rx, sy) = F(sx+1tx, sy) = F(sx, sy)+ F(tx, sy).

Now by (2)
F(rx, y)+F(tx+y, z) = F(tx, y+2z)+ F(y, z)

so using (10) here again

(17) F(tx, y)+ F(tx, z) = F(tx, y+2z).
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Hence by (17), and the fact that se Z

(18) F(tx, sy) = sF(tx, y).

Indeed, for all m, ne Z,

(19) F(mtx, ny) = mnF (tx, y).

The outcome of all this is that (16) may be rewritten as
(20) F(sx, sy) =rsF(x, y)—sF(tx, y).
For each n > 0 define a,, B, Z by a, =1, f, =0 and

(21) o S =rs'Qn’ ﬁn+l =rs'ﬁn+s2"+l

for n> 1. Then it is an easy exercise to use (20) and (21) to prove by
induction, that for all n >0

(22)  F(s"x,s"y) = a, F(x, y)—BaF(x, y).

It is also easy to prove from (21) that

(23) a,—tp, = s*n.

Since t # 0, there are by Euler’s theorem (or the fact that Z/tZ is a finite

ring), positive integers m > n such that s = s"modt say s™ = s"+ut. Then on

the one hand by (22)

(24) F(s™x, s™y) = ap F(x, y)—Bu F (tx, y)

and on the other hand, using (10),

F(s"x, s"y) = F(s"x+utx, s" y+uty)

= F(s"x, s"y)+ F(s"x, uty)+ F (utx, s" y)+ F (utx, uty)
=a,F(x, y)—=B.F(tx, y)+us"F(x, ty)+

+us" F (tx, y)+u?tF(tx, y)

by repeated use of (17). Moreover, F(tx,ty)=tF(tx,y) and F(tx, ty)
= tF(x, ty), by (19). Since ¢t # 0, we see that F(tx, y) = F(x, ty). Thus our
second evaluation of F(s™x, s™y) is a,F(x, y)—(B.—2us"—u?t) = F(tx, y).
Equating the two evaluations, and rearranging, we obtain

(Bm—Ba+2us"+u* ) F (tx, y) = (am—) F(x, y).
Multiply both sides of this by ¢, and use (23) to deduce.
(25) (am —a,,)F(tx, Y) = (am_an) tF(xa y)
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Finally, a,,—a, = (rs)™ —(rs)" # 0 since {rs{ > 1 and m > n. So we deduce from
(25) that

(26) F(tx, y) = tF(x, y).
Now use (17) and (26) to infer that
tF(x, y+z) =tF(x, y)+tF(x, z);

cancelling t (since ¢ is not a zero divisor) yields the desired result.
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