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On the structure of solutions sets
of differential and integral equations in Banach spaces

by STANISEAW SzZUFLA (Poznan)

Abstract. This paper gives some Kneser-type theorems for differential equa-
tions and Volterra integral equations in Banach spaces.

In this paper we investigate some topological properties of solutions
sets of ordinary differential equations and Volterra integral equations
in Banach spaces. More precisely, we prove that under some very general
assumptions the following theorem is true: If all solutions of equation
(1.1) or (2.1) exist on a compact interval J, then the set S of these solutions,
considered as a subset of the Banach space of continuous funections, is
a compact R;, i.e., 8 is homeomorphic to the intersection of a decreasing
sequence of compact absolute retracts. As every compact R, is a continuum,
our results generalize the well-known Kneser-Kamke-Hukuhara—Sato
theorem ([8], [9], [11], [13], [18] and [19]) for the finite dimensional
case (see also Kelley [12]).

1. Kneser’s theorem for ordinary differential equations. Assume that
N ={1,2,...},; R = (—o0, o), E is a Banach space, W is an open subset
of R x E and (t,, z,) € W. We consider the initial value preblem

(1.1) @ =.f(t1 w)’ m(to) = Ty,

where f is a continuous function from W into E.

For each compaect interval J = [t;,a] and each bounded closed
subset V of W we introduce the following notations:

C(J, E) is the space of continuous functions #: J—F with the norm
lull; = sup{[lu(t)l: ted};

C.(J, E) is the space of continuously differentiable functions v: J—>F
with the norm |ufl; = [l + w'll;;

8,(J, V) = |ueCi(J, B): u(ty) =a,, |
(t, u(?)) € V for every t e J};

a denotes the measure of non-compactness in C(J, &) (cf. [14]).

We make the following assumptions on f:

w (t)—flt, u@) <1/n and
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(D,) f is bounded on every bounded closed subset V of W;
(D,) lima(8,(J, V)) =0 for each J = [t,,a] and each bounded

n—o00
closed subset V of W.
Obviously,
(1.2) lim alS,(J, V)) =0« for every sequence (u,),u,€S,(J,V) for
n—>00
n=1,2,..., there exists a subsequence (u,, ) uniformly convergent on J.

Remark. It can be shown that condition (D,) is fulfilled whenever f
satisfies the assumptions of any one of the known existence theorems for
(1.1) (cf. [3], [4], [6], [10], [16], [23] and [26]).

We say that a function g: W—E is locally Lipschitzean if for each
p € W there is an open set U, with pe U, < W and a k, > 0 such that
lg(t, ) —g(t, Y < kp lle— gl for all (¢, x), (¢, ¥) € U,,.

Using standard techniques of finite dimensional theory the following
lemma can be proved (cf. [2], [7], [15]).

LeMMA 1. Let g: W—E be a continuous locally Lipschitzean function,
and let g be bounded on every bounded closed subset V of W.

1° If V is a bounded closed subset of W such that the distance d(V, 0W)
> 0, then there exists a number h > 0, dependent only on W, V, and M
= sup{llg(t, z)ll: (¢, x) eV}, such that for every (a,y)eV there exists
a unique solution x of the initial value problem

@ =gi,x), =z(a)=uy,

defined on [a—h,a+h].
20 Ewery solution x of the initial value problem

z :g(tyw)7 m(to) = Ty,

can be extended to the maximal interval of ewistence (q_, q.).

LEMMA 2. Suppose that f satisfies (D,), (D,). Let V be a bounded closed
‘subset of W such that d(V,0W) > 0. Then there exists a positive number h,
dependent only on W, V, and M = sup{||f(¢, »)|: (t,2) € V}, ihich has
the following property: if w is a solution of (1.1) on an interval [t,, a], and
u(t) eV for t,<t<< a, then u may be continued to the interval [ty,, a+ h].

Proof. Let r be a positive number such that d(V, 0W) > 2r. Then
the set B(V,r) ={peRxE: d(p, V)< r} is bounded, closed and con-
tained in W. Let M = sup{|f(t, z)||: (t, ) e B(V,7)}, h=min(r,r/(M +1)),
I=1[a,a+h]land B = {x € E: |x—u(a)| < r}. Obviously, I x B < B(V,r).
By [15]; Lemma 1; for each n € N there is a continuous locally Lipschitzean
function g,: W—FE such that g,(a, u(a)) = f(a, u(a)) and |g,(, z) — (¢, )]
<1/nfor(t,x) € W.Because ||g, (¢, 2)||[< M +1/n<< M +1for (¢, z)e W,neN,
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it follows from Lemma 1 that there exists a solution 7,: I—>B of the
problem ¥y = g,(t, %), y(a) = u(a). Put J = [t,, a+h] and

u(t) for t,<t<a,

0. (1) = B
Y, () for a<t<a+h.
Since y,,(a) = g, (a, y,(a)) = ga(a, u(a)) = f(a, u(a)) = u'(a) and |y, (1) —
—f(t, 4.@)|| = |9 (¢, 4.(®) — (¢, . ()| < L/n for tel, the function o,
belongs to S,(J, B(V, r)}. By (D,) and (1.2); there exists a subsequence
(v,,) of (v,) converging uniformly on J to & function v. It is easy to verify
that v satisfies (1.1) on J. Moreover, v|[f,, a] = u. This completes the
proof.

Now consider the sequence of sets W, defined by

W, ={@t,x) e W: |t| <, o] <n,d(t, ), 0W)> L/n}.

We observe that all W, are bounded open subsets of W, W = (J W,

n=1

W, W,., and d(W,,dW)> 1/n. Using the same argument as in the
proofs of Theorems II. 3.1, IL. 3.2 in [7], by Lemmas 1, 2 and (1.2), we
obtain the following theorems:

THEOREM 1. If f satisfies (D,), (D,), then every solution x of (1.1)
may be extended to the right maximal interval of existence [t,, q).

THEOREM 2. For » = 1,2, ..., consider the equations
(Dn) CU’ =gn(t7m)7 'T(to) =w07

where the functions g,: W—E are locally Lipschitzean or satisfy (D,), (D,).
Suppose that f satisfies (D,), (D,), and limg,(t, 2) = f(t, x) wuniformly

n—-oo

on W. Let u, be a solution of (D,) with right maximal interval of existence
(toy g,) for m = 1,2, ... Then there is a solution u of (1.1) with right maximal
interval [ty, q) and a subsequence (u, ) such that for any d € (t,, q) we have
[te, d] < [P0y ga,) for K sufficiently large and iimunk(t) = u(t) uniformly
on [t,,d].

Now we shall prove the following generalized Kneser theorem for
differential equations in Banach spaces:

THEOREM 3. If f satisfies (D,), (D,) and all solutions of (1.1) exist on
an interval J = [t,, d], then the set S of all solutions of (1.1) defined on J
is a compact By in C(J, E).

Proof. Let (u,) be a sequence of solutions of (1.1) with right maximal
intervals of existence [i,, q,). Applying Theorem 2 to the case g, = f,
n =1,2,..., we see that there exist a solution % of (1.1) with right maxi-
mal interval of existence [t,, ¢) and a subsequence (u,, ) of (u,) such that

4 — Annales Polonici Mathematicli XXXIV,2
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limu,, (t) = %(t) uniformly on compact subintervals of [¢,,¢q). Note

k—»00

that ¢, > d and ¢ > d, since all solutions of (1.1) exist on J. Consequently
limu,, (t)=u(!) uniformly on J. This shows that the set S is compact in

n—o0o

0(J, E). Hence it follows that the set H = {(t, 2(t)): v € 8, t e J} is com-
pact in R xE. Obviously H = W. Let r be a positive number such that.
d(H,0W)=2r. Put V = {(t,2) e RxE: d((t,x), H) < r}. Then V is a
bounded open subset of W and ¥V = W. Let M = sup{|f(¢, z)|: (¢, x) € V}.
By the Dugundji extension theorem there is a continuous function g: R x F—
—E such that g|V = f|V and |g(¢, 2)| < M for (¢, x) e R xE. From the
definition of V it follows that § contains all solutions of the equation

(1.3) ' =g(t,x), x(ty) = w,,
defined on J. Obviously, if » € S, then « is a solution of (1.3) on JJ.

Put X ={ueC(J,E): u(ty) =x, and Y ={ueC(J,E): u(t,)
= 0}. We will regard X as a complete metric subspace of C,(J, E), and Y

a8 2 Banach subspace of C,(J, F). Define a continuous (cf. [21]) mapping
G: C(J, E)->X by the formula

¢
G(z)(t) = zy+ fg(s,m(s))ds for xeC(J, E) and ted.
)

Let T = I —@, where I denotes the identity mapping on X; T is a con-
tinuous mapping X—Y.

Since all solutions of (1.1) exist on J, and their graphs are contained
in V, Theorem 2 proves that there is a number p > 0 such that

(1.4)  For each continuous locally Lipschitzean function h: V—E, which
satisfies the inequality |h(t,z)—f(,2)|<p for (t,x)eV, any
solution x of the initial wvalue problem z' = h(t,x), z(l,) = z,,
can be continued to oJ.

Put 8§, ={ueX: |lu—G(u)|, <1/n}. Choose m € N and ¢> 0 such
that 1/m+2¢ < p. By [15]; Lemma 1; there exists a continuous locally
Lipschitzean function h: R X E—F such that

h(t, 2)—g(t,z)|<e for (t,z) e RXH.
For any u € S, n > m, put
w (to) —h(ty, u(ty)) for t <1,
8, (8) = u () —h(t, u(?) for ted,
w' (d)—h(d, u(d) for t>d,

and R, (¢, z) = h(t, x)+s,(t) for (t,x) e R xE. Then h, is a continuous
locally Lipschitzean function such that |&,(¢, x)—¢(¢, z)|| <p for (i, x)
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e R xE, and u satisfies on J the equation &' = h,(¢, 2), z({,) = x,. By
(1.4), it hence follows that the graphs of all ue8,, n>m, are con-
tained in V, so that §, < §,(J, V) for n > m. Therefore lim «(8,)
<lim a(8,(, V) = 0.

n—»o00

Now, repeating the same argument as in [21], we coneclude that the
set § = T~'(0) is a compact R; in C(J, E).

2. Kneser’s theorem for Volterra integral equatioms. Now we shall
consider the Volterra integral equation

t
(2.1) z(t) = p(l)+ ff(t,s,w(s))ds,

where [ denotes the Bochner integral.
Let I = [0,c) be an interval in R, and let W be an open subset of
a Banach space E. Assume that

(I;) p: I-W is a continuous function;
(Iy) (t, s, x)—>f(t, s, x) is a function of the set {0 <s<i<e¢, ze W}
into E, which satisfies the following conditions:

1° for each fixed x € W and ¢ € I the funection s—f(¢, s, x) is strongly
L-measurable on [0, ?];

20 for each fixed ¢, s, 0 <s<?{< ¢, the function z—f({,s,x) is
continuous on W;

3¢ for each compact interval J = [0,a] < I and each bounded
closed set K — W there exist real-valued functions (¢, s)—>u(#,s) and
(r,t, 8)>p(r,1,8) (0<s<?< 7< a) such that
(i) for each fixed ¢, = the funections s—y(7, t, s) and s—u(t, 8) are
L-integrable on [0, t];

(ii) sup{llf(z,s,z)—f(t,s,2)ll: ze K} < yp(r,t,8), sup{lf(¢,s,x)|:
reK} < pu(t,s);
T [4
(iii) U(h, J, K) = sup{ [ u(v,8)ds+ [ v(z, t, 8)ds: t,red, 01 —1
i 0
< h}—0 when A—0.

(I;) For each compact interval J = [0, a] € I and each bounded
closed set K < W let S,(J, K) denote the set of all continuous funetions
u: J— K which satisfy the inequality

Hu(t)—p(t)—ff(t,s,u(s))dsngl/n for ted.

Then lim a(8,(J, K)} = 0.

n—oo
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Remark. In particular, hypotheses (I,) —(I,) are fulfilled whenever
»p, [ satisfy the assumptions of Theorem 1 of Theorem 2 of [22].

The main result of this section is the following generalized Kneser
theorem for equation (2.1):

THEOREM 4. If all solutions of (2.1) exist on a subinterval J = [0, d]
of I, then the set S of all solutions of (2.1) defined on J is a compact R, in
C(J, E).

Before proving Theorem 4, we shall prove six lemmas which will
simplify the proof of this theorem.

Let J, = [0,b], where d << b < ¢. Denote by Z the set all continuous
functions 2: J - W such that |z(0)I < d(p(0),0W)/2. Put w(h,=?)
= sup {|lz(t) —=(s)l|: t,s €J,y, t—s| < h} for any zeZ. Let us fix z¢eZ.
Choose h, > 0 in such a way that

w(h,, p)+wh,, 2) < d(p(0), 0W)/2.

For any ¢, 0 < £ < h,, we consider the equation

p(t)+=(1) for 0<t<e,

99 — t—z
2 e PO +2t)+ [ flt—e, 5, a(s))ds  for e<t<b.
0

We can easily prove the following

LEMMA 3. 1° Let V be a bounded closed subset of W such that d(V, W)
= 2r > 0, and let h be a positive number whech satisfies the inequality w (p, k) +
+w(k,2)+1(h, Jy, B(V, 7)) < r. If w is a solution of (2.2) on an interval
[0,a], and u(t) e V for t €0, a], then v may be continued to the interval
[0, a,], where @), = min (b, a - k).

2° In the domain [0, b) X W every solution x of (2.2) may be continued
to the mawximal interval of existence [0, q].).

LEMMA 4. Let V be a bounded closed subset of W.

1° If u is a solution of (2.2) defined on a compact interval [0, a] = J,
with values in V, then

4
(2.3) [u)—p)— [ f(t, s, wio)ds|| < le®lI+1(e, Io, V)
0

fort e [0, a].

2° If (u,) is & sequence of functions w,: [0, al— V such that lim||u, (¢) —

. | n-»00
—pt)— [flt, s, u,(8);ds|| = 0 uniformly on [0, a), then there exists a sub-
0

sequence (u, ) of (u,) which converges uniformly on [0, a] to a solution u of
equation (2.1).
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Proof. Let u, y be functions defined in (I,) corresponding to the
pair J,, V.
1° Suppose that a function «: [0, a]—-V is a solution of (2.2). Then

[ ¢
luy—p)~ [ flt, s, uis)ds| = e — [ flt, s, u(s))ds|

11
< @i+ [ uit,s)ds  for 0<t<e,
0

and

¢
) —p ()= [ fit, 8, uis))ds |
t—e ¢
- ”z(t)+f flt—e, 8, u(s))ds— ff(t,s,u(s))ds”
i—s ¢
< ”z(t)”‘f‘f Hf-(t13’ “(3))"‘f(t_373’ “(s))”ds‘f' f”f(_t,s,u(s))”ds
0 t—e

t—e t
<@+ [ vt t—e,8)ds+ [ p(t, s)ds
0 t—s

for ¢ <t< a, which proves (2.3):
20 If (u,) is a sequence of functions u,: [0, a]—>V such that

t
(%) Lm ”un(t)—p(t)—ff(t,s,un(s))ds” =0 uniformly on [0, a],

then, by (I,) and (1.2), there exists a subsequence (unj) of (»,) which con-
verges uniformly on [0, a] to a function u: [0, a]—V. Since [|f(t, 5, u,,(s)) —
—flt, s, u(s))l| < 2u(t,s) and lim f(t,s, Un; (8)) = f(t, s, u(s)) for each

J}—>0o0
0<s<t<a, the Lebesgue dominated convergence theorem proves
that

t
lim [ ||£it, s, uy,(5))—f{t, 8, u(®))|ds =0 for te 0, al.

J—=00 0

¢

By (+), this implies u(t) = p(t)+ [f(¢, s, u(s))ds for 0 <t< a, which
ends the proof. 0

LEMMA 5. Let V be a bounded closed subset of W such that d(V,0W)
> 2r >0, and let h be a positive number which satisfies the inequality
w(h, p)+1Uh,Jg, B(V,r))<r. If u is a solution of (2.1) on an interval
[0, a], and u(t) € V for each 0 < t < a, then u may be continued to the interval
[0, ], where a, = min(b, a-+h).
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Proof. For a small ¢ > 0 we define a function v, by the formula
l'u,(t) for 0<t<a,

u(a) for a<t<ate,
v.(t) =

{—e¢
\p(t—s)+f f(t——e,s,'ve(s))ds for ate<<t<a,.
0

Obviously, v, is continuous on [0, a,], and v.(t) € B(V,r) far t € [0, a,],
because

[0 (t) —u(a)l

t—es a
=|lpe—a+ [ fli—e,s,v(0)ds—p(@)— [ fla,s,v.(s))ds|

t—e a
<lpt—e)—p@l+ [ |[flt—e,s,v.0)|ds+ [ [|fit—e, s, v.(s) —
a 0

—f(a'7 8, 'Ds(s)i“ds
<w(h, p)+1h,Jy, B(V, 7))

for at+e<<i<a,.
On the other hand,

= ”u(a)-p(t)- ff(t, s, 'u,(s)dsH

‘ 1
o,(t)—p(t)— [ flt, 5, v.(5))ds

a t
= Ilp(a)—p(t)+ ff(a,s,v,(s))ds—ff(t,s,v,(s))ds”

a 2
<lp@—p@l+ [ [[£(t; s, v.(5))—Fla, s, v.(9))l|ds + [ || I, 5, va())]| ds

<w(e,p)+1e,dy, B(V,r)) for a<t<a+es,
and

t
0, (1) ~p()— [ flt, s, v.(s))ds]

t—s t
=|lpt—e)—p)+ [ f(t—s,s,q;,(s)pds—ff(t,s,v,(s))ds“
0 0

t—e

<lp@—pE—el+ [ [If(t, s, 0.(5)) =flt—e, 5, v, (9)]]| ds +
1]

+ [|f(t, s, va(s))||ds

t—=

S wie, p)+1lle,doy B(V,7)) for at+e<t<ay.



Differential and integral equations in Banach spaces 173

This shows that

lim

60

t
v, (1) — p () — ff(t,s,'us(s))ds“ =0 uniformly on [0, a,].

Let (¢,) be a sequence of positive real numbers tending to 0 as n— oo,
and let u, = v, . By Lemma 4 there exists a subsequence (“n,-) of (u,)
which converges uniformly on [0, a,] to a solution v ef equation (2.1).
Moreover, v|[0, a] = u, because u,|[0,a] = « for each n, so the proof
is complete.

Now, using the same argument as in the proofs of Theorems II. 3.1,
I1. 3.2. in [7], by Lemmas 3-5, we obtain the following

LEMMA 6. In the domain [0, b) x W every solution xz of (2.1) may be
continued to the maximal interval of existence [0, q);

and

LEMMA 7. In the domain [0, b) X W we consider equation (2.1) and the
equations '

P () +2,(?) for 0<t<e,,

(L) @) = ra
P +2,(0)+ [ fit—e,, s, 2(s))ds  for &, <t<D,
0

where z,€Z, 0<e, <h, and n=1,2,... Suppose that lim ¢, =0
and lim z,(f) = 0 uniformly on J,. Let u, be a solution of (I,) or (2.1)

n~—»>o0

with maximal interval of existence [0, q,) for n = 1,2, ... Then there is
a solution w of (2.1) with maximal interval of existence [0, q) and a sub-
sequence (unj) such that for any a € (0, q) we have [0,a] < [0, qnj) for j
sufficiently large and limunj(t) = u(t) uniformly on [0, a].

j—o00

The next lemma is a modification of the Dugundji extension theorem.

LEMMA 8. Let V be a bounded closed subset of W, and let u, p be functions
defined in (1,) corresponding to the pair J,, V. Then there exists a function
(t,s,x)>g(t, s, x), defined for 0 < s<t<b and z € E, such that

10 g(t,s,x) = f(t,s,x) for each 0 <s<t<band xeV;

20 for each fized x € E and t € J, the function s->g(t, 8, x) 8 strongly
L-measurable on [0, 1];

30 for each fived t, s, 0 <8< t< b, the function z—g(t, s, x) is con-
tinuous on H;

4° |g(r, 8, 2) —g(t, 8, 2) [ < p(r,t,8) for 0<s<tI<T<h wek;

50 |lg(t, s, )| < u(t,s) for 0 <s<<I<bh, vxek.
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Proof. For any ¢ € ENV define
Q) ={yek: |ly—azll <d(z,dV)/3}.

Then @ (x) is an open subset of £ and EN\V <« [ J @(x). Since any metrie
Ze NV
space is paracompact, there is an open locally finite refinement {P,: a € 4}

of {Q(®): € ENV} which covers E\V. Put v,(x) = d(x, EN(VUP,))/
| 3 d(z, EN(VUP,)) for each z ¢ E and a € A. It is easy to verify (ef. [1],
Ped

p. 238) that v, is continuous on K. For any a € A choose x, € P, and y, € ¢V
in such a way that |lz,— .|| < 2d(z,, 0V). Put

f(t, s, x) for 0 <s <t gb, zeV,

g(t,s,z) = v ‘
af(t’s,ya)’”a(w) for 0<s<t<b, zeE\V.
aed

In the same way as in [1], p. 239, we prove that for each fixed t, s
the function x->¢(¢, s, ) is continuous on K.

On the other hand, for any x € E\V there exists a finite set B, < 4
such that

(2.4) gty 8,2) = D f(t,$,9.)0,(2).

aeB,.

This implies that for each fixed ¢, # the function s—g¢ (¢, s, ) is strongly
L-measurable on [0, t].
Moreover, from (2.4) it follows that

lg(zy 8, @) —g(ty 8, 2) = || D} (£(z, 8, ¥ —f(ts 8, ) va(a) |

aeB,

Z'U (T, 8, ¥a) —f(2, 8, Yol

aeB,,

< D va@)p(r, 1, 8) < vz, 1, 9)

aeB,
and
lg(t, s, ) = 1| 3 £t 5, y)va@)] < X 0@ 1f (2, 5, 9l
aeB, acB,
< Do (@)ult, ) < ult,s)

aeB,

for each 0 < s <t < v < band z ¢ E. This concludes the proof of Lemma 8,

Proof of Theorem 4. Suppose that all solutions of (2.1) exist on
J = [0, d). Denote by § the set of all solutions of (2.1) defined on J.
Similarly as in the proof of Theorem 3, from Lemma 7 we deduce that S
is compact in C(J, E), and therefore the set H = {z(f): v €8, teJ}
is compact in E. Let r be a positive number such that d(H, oW) > 2r,
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and let V ={xecE: d(z, H)<r}. Then V is a bounded open subset
of £ and 7V = W. Let g be the function defined in Lemma 8 corresponding
to the pair J,, V. From the definition of V it follows that S contains all
solutions of the equation

4
(2.5) z(t) = p()+ [g(t, s, 2(s))ds

defined on J. Conversely, if » € §, then « is a solution of (2.5).
Define a mapping G: C(J, E)—C(J, E) by the formula

¢
G(x)(t) = p(t)+ fg(t,s,a:(s))ds for zeC(J, E) and teJ.
0

By (I,) and Lemma 8, we have
G () () — G (@) ()| < p (1) —p (&) + (1t —s], g, V)

for each z e C(J, E) and t,s e J, which shows that the set G(C(J, E))
is equiuniformly continuous. Put

w(h) = Sup{“y(t)_y(s)”: Yy EG(C(J.r E))’ tysed,|t—s| < h}-

Then lim w(h) = 0.
h—0+
Now assume that z,, x e C(J, E) and lim |r—z,|, = 0. Because

fim g(t, 8, 2,(5)) = g(t, 5, (s) and [gt, 5, 7,0 —g (2, &, 2] < 2m(ts 9

n—-o

for 0 <s<t<d, the Lebesgue theorem proves that lim G(z,)(f) =

= G(w)(t) for every t e J, and hence, by the equicontinuity of G(C(J, ),
lim ||G(z,)—G(z)|, = 0. This proves the continuity of G.

~—> 00

Further, let T = I —G, where I denotes the identity mapping on
C(J, E). Obviously T is a continuous mapping C(J, H)—C(J, E).

We shall show that T is 0-closed (cf. [20]). Since all solution of (2.1)
exist on J, and their values belong to V, a simple argument based on
Lemma 7 shows that there is a number ¢ > 0 such that

(2.6)  For each continuous function z: J,—~V and each ¢ > 0 such that
()|l + & < q for all t € J,, in the domain [0,b) XV any solution x
of equation (2.2) may be continued to J.

Put 8, = {ueC(J, E): |ju—Gu)l,<1/n}. Choose m € N and &> 0
t

‘such that 1/m+w(e)+e+ fu(t,s)ds < gq for 0 <t<e For any wed,,
0

n>=m, let

t
Y () = “(t)—P(t)—fg(t,s,u(s))ds for ted,
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.and
fg{t,s,u(s))ds for 0 <t<e,
v, (1) =1, e
6fg(t 8, u( )ds—uf glt—e,s,u(s))ds for e<t<d.
Then |y, ()| <1/m for ted, |v,( ftyt s)ds for 0<t<e, and
I, (Dl < w(e) for e <t<d. Putting z,(¢ ) = Y, (1) - v,(t) for teJ, and

2,(t) = z,(d) for t > d, we see that |z, ()| +¢ < ¢ for t € J, and u satisfies
on J equation (2.2) with z = 2z,. By (2.6) hence we deduce that the values
of all w € 8,, n > m, belong to V, so that S, = 8,(J, V) for » > m. Con-

sequently, lim a(8,) <lim ¢(8,(J, V)) =0, and therefore T =1 -@Q

Nn—00 n—-oo

is 0-closed.
Applying Theorem 5 of [20], we see that the set § = T7'(0) is a com-
pact R, in C(J, E), which was to be proved.

Remark. If f(i,s,2) = f,(s, )+ f,(8,x), where f, is completely
continuous and f, satisfies ¢he assumptions from the papers of C. Olech [16]
and T. Wazewski [26], then f satisfies (D,) but (I;) does not hold. This
example proves that Theorem 4 does not imply Theorem 3.
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