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The problem of the number of switches
in parabolic equations with control

by ANDRZEJ KARAFIAT (Krakéw)

Abstract. The main theorem of the paper says that the optimal control in a
process described by a parabolic equation with a boundary econtrol has a finite number
of switches. The estimation of that number is given. Other theorems concern some
fundamental properties of the optimal control and describe its changes by moving
of the final moment.

Introduction. We will consider in this paper the optimal control
problem in a process described by one parabolic equation of one space
variable with a control contained in a boundary condition of mixed type.
The norm of the solution at the final moment in the space L™ is taken
as a cost functional.

The main purpose of this paper is to prove a theorem about the
finite number of switches of an optimal control. Theorem 2.11 estimates
that number. We also prove theorems concerning the existence and uni-
queness of the optimal control (2.1 and 2.9), the bang-bang principle
(2.8) and also a theorem giving an inequality for the number of zeros
of a solution of a parabolic equation (1.11). The third section presents
the changes in optimal control, and especially in the number of switches
with the movement of the final moment.

This paper was inspired by the paper of Ju. W. Egorov [2] and the
books of J. L. Lions [4] and A. G. Butkowskii [1].

The author wishes to express his gratefulness to Professor Andrzej
Pli§ for his helpful advice and assistance.

1. Let us consider a process described by a partial differential equa-
tion of parabolic type with a one-dimensional space variable

0%y (t, x) ay(t, x) dy(t, =) _
W) a0 I L, o) D o, 2y — T <

in the domain P: = (0, 1] x(—1,1) with the initial condition
(2) y(0, ) = g(x), xe[—1,1],

0



290 A. Karafiat

and boundary conditions

O B, —1) = u),

0% iz
3) te(0,T].

oy B
%{ +y(®)y, 1) =0(1),

lz=1

‘We shall make the following assumptions concerning this problem:

The functions a(t, z), b(t, x), c(t, ) are defined and continuous on P
(where P is the closure of P);

There exist constants L,, L, > 0 such that for any (t,x) € P
L, < a(t, z) < Ly;
There exist constants A, a > 0 such that for any (ty, z,), (¢, &,) € P:
[@(tsy @;) — a(tyy 2.)] < A (12— 2" + |81 —1,1%),
(4) 1Bty @) —b (b, @] < 4 Joy — ol
le(tyy @1) —e(ty, )] < A0y — 2%
c(t, ) < 0 for each (i, x) € P;

The functions B(1), y(t) are non-negative and continuous on (0, T'];

The function g is bounded, piecewise continuous, continuous at -1
and conlinuous from the left on [ —1,1];

The functions u(t), v(t) are measurable and bounded on (0, T].

In order to describe the dependence of the solution y of (1)-(3) on g,
u, v, we can use the formula ([3], p. 144)

¢
y(t,2) = [[I(t,2,7,1)—T(t, 2,7, —)g(r; 1)]dr+

1

+ [ I, ,0, Hg(e)dE,

-1

which we can write (changing the order of integration) as
¢

6  y(t, @) = [[Ko(t, s, 7, —1)u(r)+K,(t, @, 7, 1)o(r)]dz +

0

1
+ le(t,:v, 0, £)g(&)de,
-1

where K,(t, z, -, +1), K,(¢, x, 0, -) are the elements of the spaces L2(0, T),
L2(—1, 1) ([3]) for each fixed (i, z) € P. Therefore, for each fixed (¢, ) € P
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the functional
Lz((O, T]) X Lz((O, T]) X LA([—1,1])> (u, v, g)>y(t,2) e R

is linear and continuous.

At this point let us state precisely what we mean by the solution
of problem (1)-(3) with a piecewise continuous initial eondition and
measurable boundary conditions. To do this let us denote by ¥, the so-
lutions of equation (1) with the following initial and boundary conditions:

(2:) ¥:(0,2) = go(z), @e[—1,1],
0
~ e | BN, —1) = w0,
35 te(0,T],
Wl gty 1) = o)
aw et k\Yy k b
where
0y, (t, z) | . — lim 0y, (t, &)
ox z==+1 241 ox

and g, U, v, are continuous functions with suppg, contained in the
segment (—1,1). In this case there exists a solution of problem (1)—(3)
in the ordinary sense. Let us choose the sequences u;—u, v,—v, g,—g
in L2((0, T]), L%([ -1, 1]), respectively, which fulfil the above conditions.

Since the functions g, u,, v,, can be chosen in a such manner that

sup [g.(x) < sup |g(z)l,

ve[—1,1] ze[—1,1]

(6) sup |u, ()] < ess sup [u(?)],
!((0,1‘) t((o,T)

sup {v, ()| < ess sup |v(t)],
te(0,7) Le(0,7)

the functions y,(, ) are bounded by the same constant ([3]). Hence
there is a subsequence {k;} such that the limit

y(t, 2) = limy,, (t,2)
exists for any (¢, #) e P and the derivatives

Oy 9% Oy
oz’ oz’ ot

are limits of suitable derivatives of the functions Yigy»
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The convergence y,—y in P (because K,, K, € L?) implies that these
limits are unique. Function y defined in this manner satisfies equation (1)
in the domain P ([3]). ¥ will be called the solution of problem (1)-(3).
It agrees with the generalized solution of this problem ([67).

Let us write

(1) P:=(0,T]x(—1,1); L:={T}x(—1,1), 8:=0P\L,

where “: = ” means “equal by definition”.

We fix the initial function g(x) and denote by y(t, z; 4, v) the solution
of problem (1)—(3) with the functions %, v in (3). When there is no doubt
as to w, v we will write simply y (¢, @). |

1.1. PROPOSITION. We can apply the theorems about weak differential
inequalities of parabolic type ([7]) to the solution defined above because
those inequalities for the approximating solution y, remain true for y. We
can also apply the strong maximum principle ([3]), because the solution
y(t, x) is continuous for te(0,T], x = +1 and for t =0, x e[ —1,1]
can be approximated by a solution of problem (1), (2,), (3;) with conditions (6)
fulfilled.

1.2. LEMMA. Let y(t, ) be a solution of equation (1) in the domain P.
Using notation (7), for any (T, z,) € L, h > 0, we get:

1° If y(T, z,) > 0, then there is a component (a connected subset) A,
of the set

A: = {t,z) eP: y(t,2) > y(T, z) —h}

and a point (', ') € S such that (T, z,), (', x') € Ay and y (', 2') > y(T, z,)
if y(t, x) # y(T, z,) on P;

2° If y(T, x,) < 0, then there is a component B, of the' set

B: = {(t, 2) eP: y(t, ) < y(T, x,) + b}

and the point (t', x') € 8 such that (', &'), (T, x;) € By and y (t', 2') < y (T, z,)
if y(t',x') # y(T, z,) on P.

Proof. 1° The existence of the component A4, containing the point
(T, x,) is obvious. The strong maximum principle implies that either
y(t, ) =y (T, x,) on A, and thus on P or there is a (i, 2’) € 04,n8 such
that y(', z') > y(T, x,), because y(i,x) = y(T,z,)—h on 0Ay nintP.
Thus 1° is proved. 2° follows from 1° by a substitution of ( —y) into 1°.

1.3. COROLLARY. We assume that for the fived solution y of equation (1)

there are numbers —1< <X, <<wg<<1l such that y(T,x,), y(T, x,)
>0, y(T, x,) < 0. Then:

1° there is a component B, of the set
B: = {(t7 x) e P: y(t, 2) < %mm{y(T’ 2), y(T, m:i))l
and the point (t'', x'') € 8 such that (T, xz,), (t",x"’) € 0B, and y (', z"') < 03
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2° of A,; A, are the components of the set
A: = {(ty x) e P: y(t, z) > %min(y(T’ @), y(T, $3))}

such that (T, x,) € A, (T, x3) € A,, then for any (V; ') e Snd,, (t'",2""") e
€ 8SNA, the order of the points (t'; x'), (¥, &""), (t""',2""') on 8 is the same
as the order of (T, x,), (T, z,), (T, x3) on L, i.e., ' < 2" <" if 2| <1
and ¥ <t <t if & =1, ' >t">t" if 2 = —1.

Proof. 1° is a simple consequence of Lemma 1.2. Since BynL +# @
and B,n8S # O, the set P\B, is not connected (because L\B, is not
connected). Therefore the points (T, z,), (T, 2;) belong to its different
components. Since 4,UA, = P\B,, A,nA, = @. Hence on the boundary S
the point (¢, ') divides the sets 4,08, A,n8, which was to be proved.

1.4. COROLLARY. Swubstituting the function (—vy) into Corollary 1.3,
we oblain the following statement:

If y(T, x,), y(T, 23) < 0, y(T, x;) > 0, then there is a point ("', 2"} € §
such that for any (t',2"), ("', z""') € 8 “joined by components” in the sense
of Corollary 1.3 with (T, x,), (T, x;) inequalities of 2° hold and y(t"’, ') > 0.

1.5. DEFINITION. Let ¢: (a, b)—>R? be a fixed continuous function,
let K: = {g(t): t € (a, b)} be a Jordan arc and let f: K—R be piecewise
continuous, continuous from the left.

1° We say that the function f changes its sign n times on the arc K iff
no=sup{m: Ja <@, < B < oo < By < b2 flg(@))fg(@i10)) <0,
i=1,...,m}.

20 Let the function f be continuous on K. We say that this function.
has n zeros at which it does not change sign iff

n =sup{m: Ja< @, < 2, <...< &y, < b: for i =3k—1,
k= 11 ceey M, f(g(mz)) = Or f(g(wi—l))f(g(mi+l)) >0
and f(g(@)fg(e") = 0, ¥o's o e oy, 5,0}

1.6. LEMMA. Let y(t, x) be a solution of equation (1) in the domain P..
If the function y(T, x) of the variable x changes sign m, times on (—1,1)
and has there m, zeros at which it does mot change sign, then the fumction
Y(t) )|y z)es changes sign on the boundary S at least m,+2m, times.

Proof. Since the number of sign changes of the function y (T, x) is
finite, there are a, h,, h,, > 0 such that y has a constant sign on T X
X (=1, by —1)U(T ~s, T} x {hy—1} and on {T} X (1—h,,1)U(T—s,T]x
X {1 —hg}.
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Remark. Under the assumptions of Lemma 1.6 for a positive s
small enough the function (7T —s, x) changes sign on the interval (&, —1,
1—h,) at least m,+2m, times.

Indeed, the interval (h, —1, 1 —h,) contains m, + 2m, +1 subintervals
such that on each of them the function y(7, ) has a constant sign and
is not equal to zero. Applying to each two or three abuttihg subintervals
‘Corollaries 1.3 and 1.4, we can note that the interval (k, —1,1 —h,) has
at least m, +2m,+1 subintervals on which the function y(T —s, £) has
a constant sign and is not equal to zero. Moreover, Corollaries 1.3 and 1.4
imply that the function % (7T —s, z) changes sign on (k,—1,1—h,) at
least m, +2m, times, which completes the proof of this remark.

This remark implies the existence of at least m, + 2m, -1 components
of the sets

Cnf(t,x): t<T—38}, Dn{(t,2): t<T—s},

where C: = Pny'((—o0,0)), D: = Pny~'((0, + ), because the com-
mon part of each component and the interval {I'—s}x(—1,1) is con-
nected (Corollaries 1.3 and 1.4). The components of C and D alternate,
and thus their traces on 8 alternate too. Hence y(t, ) as the function
on 8 changes sign at least m, +2m, times on Sn{({, x): ¢ < T —s}. This
means that the Lemma 1.6 is true.

1.7. DEFINITION. The integrable function f: (a, b)—>R is said to- have
n switches on the interval (a, b) iff n is the smallest number such that there
arepoints a = ay< a4, < 6, < ... < @, < @,,, = b for which the function f
has a constant sign almost everywhere on each interval (a;, a;.,), ¢ =0, ...
...y M, i.e., for almost all z’, &" € (a;, a;,,), f(2')-f(2"") > 0. The points
fulfilling this definition (a,,..., a,) are said to be the switching points
of the function f.

1.8. LEMMA. Let y(t, ) be the solution of problem (1)—(3), let A be
the component of the set D defined above and let AnL # @, An({0}x
x[-1,1]) =0.

Write

t, =inf{t: (¢, —1)e A}; ¢, =inf{t: (¢,1) e A}.

If the functions u, v have a constant sign almost everywhere on the intervals
{t,y t3) and (g, 1,), respectively, then u(t) = 0.on (i, t;) or v(t) = 0 on (i,,t,)
a.e. and, moreover, u(t) > 0 or v(t) > 0 on the set of positive measure contained
in (11, 8) or (t5,1,).

1.9. Remark. Let us suppose in Lemma 1.8 that A is a component
of C defined above, then, the other assumptions being unaltered, «(¢) < 0

on (t,,1%) or »(t)< 0 on (f,,%,) a.e. and %(f) << 0 or v(¢) < 0 on the set
of positive measure contained in a suitable interval.
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The proof is an immediate consequence of Lemma 1.8 applied to
the function (—y).

1.10. Remark. If the component 4 in Lemma 1.8 has no common
points with the boundary (0, T'] x {—1} (or (0, T'] x {1}), then this lemma
gives the inequalities for the function » (or u).

The same refers to Remark 1.9.

Proof of Lemma 1.8. Let
Ay = {(t, ) e A: 1< t: = min(ty, t,)}.
Consider the solution ¥ on A4,. Since y(t, z) = 0 for (¢, z) € (intP)ndA4,
so if u(t)<<0 for te(t;,t;) and »(¢) <O for te(f,,t;) a.e, we have,
according fto the theorem on differential inequalities ([7]), ¥ (¢, ) <O
on A,. Hence the proof is completed, because this contradicts the de-
finition of 4,.

1.11. THEEOREM. Let us consider the solution y(t, z) of problem (1)—(3).
Suppose that the functions u, v have p and r switches on (0, T'), respectively,
and the function g (condition (2)) changes sign n times on [ —1,1]. If the
function y(T, x) of the variable x changes sign on (—1,1), m, times and
has m, zeros at which it does mot change sign, then

1° my+2my, <n-t-p4r+2,

20 if g(x) =0, then m,+2m, <p+r+1,

3° if g(z) =0, a,, ..., a, are the swilching points of u, by, ..., b, are
the switching points of v and

a b
f u(t)dtf v(t)dt > 0, then m,+2m, < p+7.
0 0

Proof. Let us assume s, h,, b, as in the proof of Lemma 1.6. We
can apply Lemma 1.8 to the domain P': = (0, T —s] x (—1, 1). It follows
that with every component of the sets ¢ or D having common points
with L': = {T—s} x(—1,1) and disjoint with {0} x(—1,1) we can
associate the segment contained in the intersection of that component
and (0, T) x ({—1}u{l}), where the sign of the function  (or v) is the
same as the sign of y. Alternation of components implies alternation of
those segments (because at most one of the components can have common
points with (0, T) x {—1} and (0, T) x {1}). Now the number of those
segments cannot be higher than p -+ +2; therefore the number of com-
ponents of ¢ and D disjoint with {0} x (—1, 1), cannot be higher than
p +r+2, either. Since at most n 41 of the components can have common
points with {0} x (—1, 1), then there are at most n+p+r+3 of them.
There are m, + 2m, + 1 components at least having common points with L’

(see the remark in the proof of Lemma 1.6); hence m, +2m, < n+p +7+2,
which proves 1°.
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20 If g(x) =0 on[—1, 1], then no component of C and D has common
points with {0} x (—1, 1). Thus, there are at most p +r+2 of those com-
ponents, which proves 2°.

a v
30 If g(2) =0 and fu(t)dtfl'v(t)dt > 0, then the segments (0, a,) X
0 0
x {—1}, (0,b,) X {1} cannot be contained in two different components
fulfilling the assumptions of Lemma 1.8. It follows that the number of
those components is not higher than p+r-1, which, similarly to 2°,
proves 3° and hence Theorem 1.11.

Remark. If in case 1° m,+2m, =n+p+r+2 or in case 2° m, -+
+2m, = p+7r+1 or in case 3° m,+2m, = p-+r, then there are m,+
+2m,+1 components of C and D.

1.12. CoroLLARY. With the notation and assumptions of Theorem 1.11,
under the condition that the asswmplion of the foregoing remark is true,
there is a h > 0 such that for a,, b, as the last switching poinis of u and v
the following inequalities hold:

T
y(T, ) f v()dt >0 for xe(1—h,1),
b
T
y(T, o) [w()dt>0 for we(—1, ~1+h).
“p

Proof. The foregoing remark says that there are m,+2m,+1 com-
porents of ¢ and D in P. Hence the components containing the points
(T, hy —1) and (T, 1 — h,) defined in the proof of Lemma 1.6 have common
parts with the boundary § contained in the segments (a,, T)x {—1}:
(b,, T) x {1}. Lemma 1.8 says that in those common parts the following
inequalities hold:

T
signy(t, ) = sign f w(t)dt = signy(T, h,—1)
“p
and

T
signy(t, ) = signffv(t)dt = signy(T,1—h,),
bf

respectively. Consequently, the strong maximum principle and the defi-
nition of a,, b, imply that y(T,z) == 0 for w e(—1, h, —1)U(1 —h,, 1)
and so the proof is completed.

2. We will now state the optimal control problem for equation (1)
with conditions (2) and (3). We adopt all the assumptions of Section 1
about problem (1)—(3).
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We will try to find such a pair of functions (u,, v,) € U x U, where

(8) U: = {4 measurable: |u(f)| < K for ¢t (0, T]},
that

(9) J (ug, Vo) = Inf{J (u, v): u,v e U},
where

(10) J (u,v): = sup{ly(T, z; u,0)|: |z] < 1}.

The pair of functions (u,v) e Ux U will be called an admissible
control and the solution (u,, v,) of problem (8)-(10) — an optimal control.

Similarly to J. L. Lions ([4]) we prove
2.1. THEOREM. There exists an optimal solution of problem (1)-(3),
(8)-(10).
Proof. Let («,, v,) be a sequence of admissible controls which mini-
mizes J (4, »). U'x U is a convex, closed and bounded subset of L*((0, T]) x
x L}((0, T]), and so there is a subsequence (u,,, v, ) weakly convergent
0 (u,, vy) € U X U. Let us suppose, for the sake of simplicity, that (u,, , v,,)
= (u,, v,). For each fixed (¢, ) € P the functions from (5) K,(t, 2, -, —1),
K, (t, x; -, 1) belong to L*((0, T']); hence, for each (¢, z) € P, y(t, x; %y, v,)—>
-y (t, x5 Uy, vy). On the other hand, for each z e(—1,1)
y(T; x; wu,,,)| <infd(u,v)+e,,
where ¢,—>0; therefore
lY(Ty @5 wuo, vo)| < infd (u, v),
and so
- J (g, Vo) < Infd (u, v),
which means that the proof is completed, because
J (ug, vo) = infd (u, v).
Before the main theorems we shall infroduce auxiliary lemmas about
optimal confrol defined in the above way.

2.2. LEMMA. Consider any functions fy, ..., f,: (—1, 1)>R and numbers

Zyy ooy ®,_; €(—1,1). There are numbers A, ..., A, such that |A;|+ ... +
+ |4, > 0 and
(11) Dhfile) =0, j=1,...,n-1.

=1

Proof. Write a,;: = f;(x;). Condition (11) can be written as follows:
byt . +ayd, =0,
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It is a linear homogeneous system of n —1 equations of n variables.

It posesses a non-zero solution which fulfils the lemma.

AssuMpPTION A. We say that problem (1)-(3) fulfils Assumption A
iff for any functions (u, v) € U x U not equal to zero a.e. simultaneously
and having a finite number of switches on (0, 7'), the solution of (1)-(3}
with g(z) = 0 is not equal to zero at the moment 7 on any interval con-
tained in (—1, 1).

This assumption is true, for example, for the heat equation (Egorov,
[2]). It is rather artificial, but it allows us to extend this theory to all
problems fulfilling this assumption. The author’s attempts to find any
closer characterization of these problems were unsucecessful.

2.3. LEMMA. Suppose there are given measurable sels A,,..., 4,,
B, ..., B, = (0, T) of positive measure such that for i < j for any t;€ A,,
t;eA; (l;€B;, t;eB)): t;<t. Let the numbers —1< @, <;<...<
< Bpyim1 <1 be givew. Then there are positive coefficients Ay, ..., A,

fyy---y Uy Such that if y(t, x) is the solution of problem (1)—(3) fulfilling
Assumption A, g(z) =0 and

A(=1), teAd,,

0, t¢HAi7

\

i —1)y'*Y,  teB,

{07 t¢L=J1B1,

then y(T,2) = 0iff z € {x1, ..., Tpym_1} and y(T, z) changes sign on (—1, 1)
(m+m —1) times.

Proof. Using (5), we obtain
y(T, x)

n m
= M a(=1) [Ko(t,2,7, —1)dr+ D p(—1)"*" [E,(t, 2,7, 1)dr.
A; i=1 B‘l’

t=1

Lemma 2.2 allows us to choose the coefficients A,, ..., A4y H1y---s
not all equal to zero and such that y(T,x;) =0, ¢ =1,...,n+m—1.
Assumption A implies that y(7T, ) cannot equal zero on any interval
(#;5 ®;4,). Let my, my, p, v be the same as in Theorem 1.11. Now m,+
+my > n+m—1. Since the definition of #,v implies that p <»n—1,
r < m—1, Theorem 1.11, 2° and the above inequalities imply »n+m—
1< m+m,<m+2m, <p4+r+1<n+m—1; therefore p =n—1,
r =m—1, my =0, m; = n+m—1. This means that:
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1° the function y (T, x) changes sign » +m —1 times and y(T, z;) = 0,
P =1,...,n4+m—1;

2° there are no other zeros of % (T, z) on (—1,1);

3° the functions #, v have n —1 and m —1 switches on (0, T), res-
pectively;

40
fu@ar [v@)ydt = 2,(—1)u, <0
4 B,

because the inequality of Theorem 1.11, 3° is false. 3° implies that the 4;
are different from zero and have the same sign, because only in this case
the function # defined in this way has n —1 switches on (0, T'). 3° and 4°
imply that u; also have the same sign. If necessary, we multiply 1; and
u; by (—1) to receive positive coefficients. This does not change the proof
which has just been completed.

AssuMpPTION B. Equation (1) is said to fulfil Assumption B iff the
coefficients a(t, x), b({, z), ¢(t, «) of that equation are defined and differ-
entiable with respect to « in some neighbourhood of the set P and if
the derivatives

0a 0b Oc

oz’ 9z’ ox
are continuous in P and fulfil the Holder condition (4) respectively, like
a, b, c.

2.4. LEMMA. Let equation (1) fulfil Assumption B and let the function g
in condition (2) be fixed. Then there are constanis M,, M, such that, for
every K > 0 and for any u, v occurring in (3) and fulfilling the inequalities

@< K, Pp@)<K

for a.e. t, the variation WL y(T, x; u, v) of the solution y at the moment T’
equals M,+M,K at most.

Proof. Write y(t, z; u,?v) = y,(, ) +v,(¢, ), where y, i8 the so-
Iution of (1) with the initial condition (2) and the boundary condition.

0y, _?ﬂ .
(12) ~ow |, +B8(M)y(t, —1) = ™ z=l+?’(t)y(t7 1) =0

and y,(t, ) is the solution of (1) with (3) and the initial condition
Y:(0,2) =0, xe[-—1,1].

For i, > 0 the function y,(f,, ) is continuous with respect to x; thus,
in the domain (¢,, T'] x (—1, 1), y, is the solution in the ordinary sense..
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The derivative 0y, /0r exists and is continuous in the interior of P
and by (12) is bounded there. Let
0
(13) M1:=2sup{|—%(’l‘,w), me(—l,l)}.

Then W',y (T, )< M,

Assumption B allows us to use the formula

*y, da 0*y, b dy,  Oc 0%y,
- b —_— [ —_— =

0z +(6w + ) Py +(0a7 +°) 9z 0z * owoi

Changing the order of differentiation and writing

de(t, x)

a

flit, o) :=

Yo (2, @),
we obtain the equation for the derivative dy,/dz:

9* [0y, oa 0 [0y, ob Y, 0 [0y,
“amZ(aw)"'(am + )650(0:0) +(6m Te )( am) _E(%) =7

9
Y2 (0, ) =0, 5 e[—1,1], and the boundary
X

with the initial condition

-condition
0y 4
~ o | = u =0y, —1),
0 .
Yo | = 00—y W)a(t, 1.

There is a constant L, such that |y,(¢, )| < L, K for (t, ) e P if |u(f)| < K
lv(f)| < K for t € (0, T] ([3]). Therefore, if we write:

L, : = sup [sup (IB(2)], ly(@)l), t € (0, T},

Ly:= sup{ _0_0“, x)|, (¢, x) GP}7
sup” (t, z)+c(, 2)|, (t, ) EP}’
‘then
sup{ (Zu (¢ ,w)i’ (t, ) EP} < €T [K+ L LK+ (6" —1) L, L, K]

-for 2 sufficiently large and depending only on the coefficients of equation
(1) ([3]). If we define

M, = 2¢"T[1 + L, Ly(¢”* — 1) + L, L,],
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the inequality

aay; (t, w){ <iM,E for (t,z)eP

i true and implies
(14) WLy, (T, x) < MK

which, together with (13), was to be proved.

5. DEFINITION. Let f be a real continuous function not cqual to
zero identically on [a, b]. We say that this function has N essential extremes
on [a,b] iff N is the largest number » such that there is a sequence
a<y < 2<..<uw,<b for which

If@)i = 1f(@)] = ... = |f(@,)] = sup{if(@)ix & [a, b]}

and f(@;) f(e,1) <0, 4 =1,...,n—1,
According to this definition, the sequence (z,,...,zy) is called the
sequence of essential extremes of the function f on [a, b].

2.6. COROLLARY. Let y(t, ) be a solution of (1)—(3) satisfying Assump-
tion B and J(u,v) =r> 0 for each admissible conirol (u,v). Then the
number of essential extremes of the function y(T, x) on [ —1,1] is equal to
2r)y" (M, +M,K)+1 at most, where M,, M., K are constants from Lemma
2.4.

Prooi. Let ¥ be the number of essential extremes of the function
y(T, ). Lemma 2.4 and the definition of an admissible control imply
that

—~1
M, +M.K > WLiy(T,x)> S’ [f(2;) —f (@) = 2r(N 1),
1=1
where (z,,...,x,) are essentiﬂ.l extremes of the function y (T, »). Hence
N (Ml—i-M K) (2r)"' 41 and the proof is complcted.

2.7. LEMMA. Consider the solution y(i, z) of problem (1)-(3), (u,?)
being an admissible control. Suppose that Assumptzom. A and B are true,
y(T, x) has N essential extremes on [ —1, 1] and 8 not equal to zero. If the
measurable sets A,y ..., Ay, Biy...y Bx_x = (0, T) fulfil the assumptions
of Lemma 2.3 and a constant ¢ #+ 0 can be defined so that the functions

(w(t)+e(—1)F. teAd,,
’ . k
wit) = w(t), ¢ A,
1==1
rfv(t)‘i"g(_:l-)f“’ tEBi’
’ .- N—-k
=10, t¢ U By
\ t=1

¢ — Annales Polonici Mathematici XXXIV,3
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belong to U and

(15) (—1y(T, ) < 0,
where %, is the first element of the sequence of essential extremes of y(T, ),
then there are positive coefficients Ay, ..., Ay pay --5 n—rs SO that, adopting

the notation

(u()+4e(=1), ted,
r: [ y— .
w (t) <= u(t), t¢ UAH
(16) o(t) +ue(—1)7,  teB,
., L N—k
v (t) = 'U(t), t¢ U Bi?

we obtain uw'',v"" e U and J(u'', v") < J (%, v).

Proof. Let #, < z, < ... < xy be a sequence of essential extremes
of y(T,x). Let us define

w; 1= sup {® € (#;, @;,1): ¥(T,x) =0 and for 7z e (z;, @)
y(T,z) [y(T,z)' > -1}, i=1,...,

Zpi= —1, ay:=1.

N-1,

The definition of z; and the assumption about the number of essential
extyemes imply that y(7T,x) # —y(T, 2;,,) on the interval (, z;,,),
ti=0,...,N—1.

The continuity of y(T, z) gives us the inequality

(17)  d:=minint{(y(T, 2) [Y(T, 2,.1)17* +1): @ € (@}, 27,.)} > 0.

Now we introduce functions y;(¢, ) as solutions of (1) with the initial
conditions ¥,(0, z) = 0 and boundary conditions

0y, s(—l)i, teA,;,
——5;" +B()y;(t, —1) =10, t¢ A,
z=-1 0’ i=k+1’-o-,N’
t=1,..,k,
0y; 0, ) 1=1,...,k, '
_5_1' +y®)y:(t, 1) = 5(_1)14—1-,‘7 teB;_,;, i=%k+1,..., N,
Yl 0, t¢ Bi_sy

where ¢ is taken from the definition of %' and v'.

‘We choose coefficients

(18) Wy eees Py P;1°'-u“;v-k>0



Parabolic equations with control 303

s$o that

k N
D EyT )+ Y wiayilTya) =0, j=1,..,N~1.

i=1 i=k+1

This is possible by Lemma 2.3.
Next we take such ¢ £ 0 that for the funetion
: S
F@):= Y 2y(T,2)+ D) wiyiT,2)

i=1 i=k+1
the following inequality holds:
(19) le' Fx)| < d|ly(T, )] for any ze[—1,1],
where d is defined by (17) and

Sllp{ls'/l;-\, i=1,..,k<1,

(20) .
MMMMhzzL“wN_HQh

moreover,

(21) & F(2)y(T, x)<0.

The function F(z) is equal to zero at the points z,, ..., y_, only, where
it changes sign (Lemma 2.3), and that is why formula (21) is true and
implies

(22) e Flz)y(T,s)<0, i=1,...,N.
Inequality (21) and the definition F' and y, imply that
e e A (—1)Vy(T,2) <0

(Corollary 1.12). This, together with (20), (18) and (15), means:

g ef0,1], i=1,...,k,

gu;e(0,1], i=1,...,N—k.
Thus, if we write 1, : = &'A;, u, : = & u; then, aceording to the assumption
about «’, v" and the convexity of U, the functions «'’ and »" defined

by (16) belong to U. Next, inequalities (22) and (19) imply that J (v, v"’) <
< J (u, v), which was to be proved.

2.8. THEOREM. If problem (1)-(3), (8)-(10) fulfils Assumptions A
and B, if (u, v) is an optimal control and if J (u, v) > 0, then |u(t)] = |v(t)|
=K a.e in (0,T].

Proof. Suppose that the theorem is false. Then there are measurable
subsets A, B < (0, T'] of positive measure of A UB and the number ¢, > 0
such that, for all tc A, seB, |[u(t)|< K—¢,, |v(s)] << K —¢,. Since the
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variation W',y (T, x) is bounded by a constant independent of the choice
of admissible control (Lemma 2.4) and J (%, ) > 0, the function y (T, x)
has a finite number of essential extremes (Corollary 2.6). Let that number
equals N. Then we can divide the sets A and B into N subsets of positive
measure fulfilling the assumptions of Lemma 2.3 and take ¢ equal to
+&;, choosing the sign of ¢ so that inequali#y (15) holds. Lemma 2.7
implies that the control (u,v) is not optimal, thus we have arrived at
a contradiction of the assumption of optimality, which completes the
proof of the theorem.

2.9. THEOREM. If problem (1)=(3), (8)=(10) fulfils Assumptions A
and B and if inf{J(u,v): (u,v) € Ux U} > 0, then two oplimal conirols
can differ only on the set of measure zero.

Proof. Let (u,,v,), (%,, ;) be two optimal solutions. The map
y: Ux U>s (u,v)>y(T, -5 u,v) e L[ —1,1]

is affine and the sets U x U and

Y. = (T, 5 u,0) e L¥[—1,1]: (T, -5 u, o)l 0o < J (g, 1)}
are convex; so
H(ul‘l‘uz); %(”1""’)2)) e UxU and ?/(Ty 5 d(ur+us), %(”1'*"”2)) el.
It follows that the control (}(u,+us), %(v,+9,)) is optimal too.

Using Theorem 2.8 we have

3i(uy+ug) () = }1(v,+0p) ()] = K

a.e. in (0, T}y thus u,(t) = us(?), v,(t) = v4(f) a.e. in (0, T] and the proof
is completed.

2.10. DEFINITION. Consider the admissible control (u, v). If ¢, < ... < ¢,
are switching points of # and s, < ...< s are switching points of v,
k+1 = n, then for

51 8

(a) [u@adt [ v)yat> o,

0 0
we say that the control (u, v) has n switches on the interval (0, 7], and for
4 5

(b) fu(t)dtf v(t)dt < 0,

we say that the control (u, v) has n L1 switches on (0, T'].

2.11. THEOREM. Consider problem (1)—(3), (8)—(10) fulfilling Assump-
tions A and B, the optimal solution (u,v) such that J(u,v) = r > 0, and
WL y(T, z; u,v) = M. In this case the control (u, v) has at most M (2r) !
switches.
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2.12. Remark. In fact, we will show that if ¥ is the number of
essential extremes of (7, ), then the number of switches of the optimal
control is N —1 at most.

Proof. As in Corollary 2.6,
(23) 2r(N-1)< WL y(T,z; u,v) = M;
therefore N —1 < M (2r)"! and the theorem follows from the remark.

Proof of the remark. Suppose that the number of switches is
higher than N —1. Denote the sets on which «(t), v(t) are constant a.e.
(Theorem 2.8) by A,, ..., 444,y By, ..., By, respectively, so that those
sets fulfil the assumptions of Lemma 2.3. If sign «(f) = signo(¢) in a
neighbourhood of 0, then 'we¢ denote the set between the first and the
second switehing point of » by B,, so that

Ju@at [o()ar<o.
Ay B,

Thus, supposing that the remark js false, we have, according to Defi-

nition 2.10,

(24) k+1>N-—2.
Note that, for ¢ defined as

€ :== 8ign fu(t)dt,
4,

either ¢(—1)*y(T, z,) < 0, or &(—1)¥*'y(T, z,) < 0, where
@y :=inflw e (—1,1): |y(T,2)| =sup{ly(T,2):2¢e(—1,1)}}.

Hence either the sequence A,,...,A4;, By,...,B,, or 4,,...,4,,,,
B,, ..., B;, composed of at least N sets (cf. (24)), fulfils with this ¢ the
assumptions of Lemma 2.7. This lemma implies that the control (u, v)
is not optimal, and this contradicts the assumptions and proves Remark
2.12.

2.13. Complementary remarks. There are some examples which
realize equality in Remark 2.12. They can be chosen so that Entier
M (2r)~' = N —1. Thus the estimation given by Theorem 2.11 and Remark
2.12 is the best possible.

The question arises as to whether Theorems 2.1-2.11 are true when (2)
is replaced by the Dirichlet condition

y(t, —1) =u(t), y(t,1) =ov(f).

Some of these theorems cannot be true, because otherwise for the optimal
control (uq, vo) [4e(t)] = |v(#)] = K for T—h < t < T and sup{ly(T, )|,
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ze[—1,1]} > K even if sup|g(x)| < K. But in this case, for 4 =v =0,
sup {ly(T', )|, e [—1,1]} < suplg(z)| < K

and (u,, v,) iS not an optimal control.

Another question connected with this problem concerns the possi-
bility of the generalization of Theorem 2.11 to the case where the cost
funetional is

1
Ju,0) = [ (T, z; u,v)de.

3. The purpose of this section is to describe changes of the optimal
control of problem (1)-(3), (8)—(10) when the final moment 7 is being
changed.

The domain P = (0, T'] x (—1,1) will not be fixed now, but it will
depend on T. We adopt all the assumptions of Section 1 about problem
(1)—(3). The optimal control problem remains the same.

3.1. LemmaA. If {(u,,?,)}c UxUc L*((0, T} x L*{(0, T]} is a
sequence of condrols weakly convergent to (uy, v,) € U x U, then
Y, @5 Upy V) >y (B, 25 U,y Vo)
uniformly on P.
Proof. In accordance with (5):

{
Yt 25ty 0,) = [ [Eolt, 2,7, —Lyu(r) + Eo(t, 2,7, 1)0,(r)1dr +
0

1
+ [Ei(t, 2,0, Hg(&)as.
—1

The second term of the right-hand side does not depend on (%, »). Thus,
it is enough to prove the uniform convergence of the first term. To do
this we shall use the following theorem ([5]):

If E is a compact space, {f,} is a sequence of the equicontinuous functions
on E and f, (x)—f(x) on the set Z dense in E, then the sequence f, is uniformly
convergent on E.

This theorem implies that if f,, f are equicontinuous on ¥ and f,—f
on Z, then f,—f uniformly.
Let us write P = E, P = Z,

!
(28)  fult, @) : = [[Ko(t, @, 7, —1)u,(v) + Ko(l, @, 7, 1)0,(7)1d7.
0
The mapping (w,, v,)—f,(f, ) is a linear continuous functional for each

fixed (¢, ) € P; therefore f,(t, x)—f,(t, z) on P. We have to prove that
{falneo is a family of equicontinuous functions.
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Lemma 2.4 implies that the derivative df/0x is bounded in P by
a constant independent of an admissible control. Hence, for each (¢, z,),
(t x,) € P,

[fn(ty 21} — [ (8, 25)| < @y — 24l
We have to prove only that for any z e[ —1,1]
[fa b1y ®) —fo (e, )] < h(t—15),
where h does not depend on x, » and limi(¢) = 0. To prove this, let us

{—0
write, according to [3],

Z(t, @7, &) 1= 27 PPz, §) (t— )W -expfa(r, &) (@— £)? X
x [4(t—)1",

D, @, 7, €)= D (L2), (¢, @, 7, ),
n=l1

where (LZ), = LZ and L is the differential operator which associates
the left-hand side of (1) with y,

1
(LZ)py,(t, @, 7, £) : f fLZt z, 8, ) (LZ),(%, ¢, 7, &)dcdd,

t 1

I(tya,t, §): =%, a,7, 0+ [ [Z(,,0,00(8,¢,7, Hacds.

T -1
We shall define on the boundary [0, T]x ({—1}u{l})

1

= [ ae o) [ 10,0, He(6)aE—

-1

—w(t, ),
where

D, i g, 2
dv(t,w) |z-|—>z1 ’

and
p(t,1):=a(t, 1)y, »lt, —1):=a(t, —1)-4(1),

w(t,1):=a(t,1)-v(), w(t, —1):=a(t, —1)-u(t).
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Let us write, morecover,

20I(t, z, T, &)

M, (t, @, v, §):= do(t, o)
’

+2p(t, ) (¢, 2, 7, &),

1
M, (tx, 7, ) :::f[ﬂ[l(t7 x,0,1) M,(a,1,7, &) —
0

— M\, z,0, —1)M, (6, —1, 7, £)]do,

¢ co
plt, @) = 2F(t, o) +2 [[ 3 M, (t, 0,7, 1) F(z,1)—

n=1

—M,(t, 2,7, —1)F(z, —1)|dr.

This explains the symbols used in the formula, which implies (5) (Section 1).
Applying that notation we get

¢

Ifn(t19 CU) —f'n(tm w)] = if [F(tl’ 50, T) 1)9)(7"7 1; un’ Un)_'

—I'{t, 2,7, —Le(r, —1; u,,v,)]dr —
ty

_f Lty 2y 7, Vp(r, 15 U,y 0,) — 'y, 2z, 7y —L)@(r, —1ju,, 'Dn)]d'f'
0
< Wi-+W,4+W,,

where, if we assume that ¢, ~h <?, < t,,
ty—h

Wy = | [ {IT(ty @, 7, 1) = Dty @, 7, D]9(e, 15w, 2,) —
0

_‘[P(tla Ty T, —1)_F(t27x1 7, _1)]?’("’ _‘1; un’vn)}dT\I

!

(26) Wi =| [{[I'(t,@,7,1)=T(ty, @7, 1)]p(r, 15 ty,,) —

—[I'(ty, x, v, —1)—I'(t, 2, 7, —1)]@p(z, —1; u,, 'vn)}dflr
ty
Wa: = | [ [D(t, 2,7, 1)g(e, 15 1y, 0,) =
4

—T(ty, 2,7, =) p(r, —1;u,, vn)]dtl,
we get
(27)  1Z(t, @, Ty &) —Z(ly, @, T, &)]
= (4ma(z, &)t —2) " exp[ — (¢ — £)’a" (7, £)-47 (6, —7) ']~
—(t;—7) " exp[—a7 (7, &) (@ — &4 (Lo — )]
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= (4ma(z, &) V[t — )" —(t,— )" Jexp[ - a" (7, &) X
X (@ — &) 47t —7) 7 ]+
+(t—7) " [exp{—a~(z, &) (& —£)’47 (t, —7) 7'} —
—exp{—a~!(z, &) (— £)*47 (t.—7)'}]|
< (4ma(z, &)t — o) =t — )] [ —7) (te— 7)1 +
+(te—7) Pexp[—a" (7, &) (@ — £)°47 (E,— 7)1 ] X
x {exp[—a~(r, £) (w— £)2471 (t, —v) "' +
+a " (z, &) (o —&)247 (la—7)" ] -1}
for r <t —h<t, <y, ¢, Ec(—1,1)
< const [(f,—ty) [(8,+ b — ) PR (8 4+ B —8,)" + ()1)] 7+
+h Y {exp [ —consti(t, —1t,) " 47 (6, +h—1£,) " AT ] — 1} >0,
having fixed h and ¢;—>%,, which, together with formula (cf. [3])

const

|ty z,y 7, &) < (G—) jo— £

for any u € (1 —}a, 1), where « is from (4), implies
ty
@28) | [ [Z(tsw,0,0)P(0,¢,7, Eado+
T -1
o
+.f f[z(tua’y 0, 5)—Z(ty, @,y 0, {)]P(0, {, 7, E)dCdGlQO-
T -1
Omniitting terms independent of (4, v) which do not belong to the first
term of the right-hand side of (5), we can write
oo
Pty 15 u,0) =20(1)+2 D [ [Ma(ty 1, 7, 1)o(z) =M, (t, 1, 7, —1)x
n=1

0
X u(z)ldr.
Therefore, for (u,v) € U x U,
oo ¢
p(t, z; u,v) <2K+2K Zf (M, (¢, 1, 7, 1)+ M, (2, 1, 7,—1){]dr.
n=10
This series is bounded and absolutely convergent (c¢f. [3]) independ-
ently of (%, v) € U x U. Hence, (26)-(28) and the formula for I'(t, x, , £)
imply that for any & > 0 there is a é > 0 such that for each ¢, e (8, — 4, t,)
W, < ¢/3. The summability of I' as a function of = on (0, ¢) implies that
there is an h > 0 such that W,<¢/3, Wy<¢/3 for ¢, € (¢,—h, t,). So we
have completed the proof of the equicontinuity of {f,}, and thus the
proof of the Lemma as well.
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3.2. THEOREM. Let problem (1)—(3) fulfils Assumptions A and B.

1° If T, —T, is an increasing sequence, if (u,, v,) 8 the optimal control
in problem (1)—(3), (8)«(10) in the domain P, = (0,T,]1x(—1,1) and if
J(u,,v,)>0 for n =0,1,2, ..., then the sequence
(0 (1), v (1) T<T,,

(’Mn(t)y,’un(t)) = (0,0), té(Tn, -To]r

converges
Up (D)= uo(t), v, ())—>ve(t) a.e. on (0, T,].

2° If T,—~ T, is a decreasing sequence, if (u,,v,) is the optimal control
for P, and if J(u,,v,) >0 for n =0,1,2,..., then the sequence

(un (), v, (), 1T,

(uﬁ,(t)ﬁvn(t)) = (0,0), te(Tn’ Tl]’

converges :
Uy (B)—>ug (1),  V,(0)—>2(t) a.e. om (0,T,].

In cases 1° and 2° there is a LimJ (u,,v,) = J (uy, v,) and J (u;, v;)
n—00
< J(u;, vy) for T, > Ty.

Proof. 1° The sequence (u,,, v,) is contained in the bounded, convex,
closed set U x U = L?x L® Hence there are weakly convergent sub-
sequences w,, X fv;k (convergent in measure); thus there are subsequences
convergent a.e. to some functions u,,v,. It will be sufficient to prove
that for any such sequences u, (t) = %,(t), v, (!) = v,(f) a.e. on (0, T,]
and to prove the last sentence of the theorem.

Denote the chosen subsequence by (u,,v,). Let wu,—>u;, v, —>v,
a.e. and let y,, (¢, #) be the solution of (1)~(3) in the domain ('O,'T,,] x(—1,1)
with « = u,, v = v, in condition (3).

The maximum principle for problem (1)-(3) implies that, for each
(t, @) € (T, To] x (—1,1),

1Y (ty @) < sup{ly (T, 2): @] < 1} = J (Uy, v,)

([7], §§64 and 54). Since for m > n > 1 the control (u,,, v,) does not satisfy
the bang-bang principle on (0, 7,1, we have

(29) I (U y V) < SUP {4, (Tey @)1 2| < 1} < J (04, 0,,).

This means that the minimal cost is a strongly decreasing function of
the final moment. This means that for any n > 1 we also have

(30) J (g, Vo) < J (%, 0,,).
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The consequence of the uniform continuity of v,(¢, z) on (3T, T,) X
X (—1,1) (Lemma 3.1 and (5)) is that

(31) J (g, o) = sup {ly (Lo, x; o, vo)l: |2] < 1}
= lim (sup {|y (T, 25 %o, v || << 1})

> limsup (sup |y, (T, 2)|)

n—0o0

= limsupdJ (,, v,).

n—-oQ
Since u, —wuy, v, —v, weakly, then, for any z e (—1, 1), y(T,, 2; 4., v.)
—y(Ty, 2; u,,v,), which means that
(32) (Lo, w5 g, o) < Hminfd (u,, v,) < liminfd (u,, v,).
n—o0 n—>o00
It follows from (30), (31) and (32) that
J (%gy vy ) < limintJ (u,, v,) < limsupd (%, v,) < J (%, ;)

n—>co n—»o0

and from the optimality of (u,,v,) and the uniqueness theorem — thaf
1wy (8) = ug(t), vy (£) = vo(t) a.e. on (0, T,] and

J (U, v5) = Hmd (u,,, v,) = J (4, ),
n—o0
which was to be proved.
2° Suppose, as above, that (u,, v, ) is a subsequence convergent a.e.
to (g, vy ). Likewise we can prove that the minimal cost is the decreasing
function of the final moment. It remains to prove that 4y (£) = u,(t),
vy (1) = v,(t) a.e. on (0, T,], and that

J(ug, ) = limd (u,, v,).

n—o00

The function ¥(t, ; u,,v,) is uniformly continuous on (4T, T,] X
x [—1,1]; thus for each ¢> 0 there is an N such that for n > N

(33) J(u,, v,) = sup {I?/n(Tm z)|: 2] <1} = Yo (Tp,y ,) 5

where x, is such a number that the maximum of y(T,, z; u,,v,) is at-
tained at x,,

= (Y (Tpy @5 g y Vg )| — &= sup {{y (T, &5 g, 0 )| || < 1} —¢
> sup {|y(To, #; %y, 0 )2 |#] < 1} —2e.

These inequalitics are true because of the uniform convergence y,—Yy
(Lemma 3.1).
The optimality of (u,, v,) implies that

(34) J (g ¥y ) = sup {ly(Ty, x; ey Vg )2 2] < 1} = J (ug, vy),.
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and the decrease of the minimal cost implies that

(35) Limsupd (u,, v,) < J (%, V).

n—00
Using (33)—(35) we have, for any ¢ > 0,
J (%gy Vo) = limsupdJ (u,, v,) = limintJ («,, v,) > J(ME.', 'v:ll) —2¢

n—ro0 n—00

= J (g, o) — 283

hence there is a limd (u,, v,) = J (U, 05 ) = J (%g, V).

Theorem 2.9 implies that u, (£) = u,(t), vy (£) = v,(t) a.e. on (0, T,],
and, morcover, the pointwise convergence wu,, (2)— 1, (t), v;,' (t)—=>vy (t)
implies that u, () =wv, () =0 on (T,,T,]- Therefore u, = u,, v, = v,
a.e. on (0, T,], which was to be proved

3.3. THEOREM. Let problem (1)—(3) fulfil Assumptions A and B. Sup-
pose that T,—T,> 0, (u,,v,) zs an opmmal control of problem (1)—(3),
(8)-(10) in P,, and J(u,,v,) >0, n =0,1,2,... Then in each neigh-
bourhood of any switching point of wy(v,) for n sufficiently large there is
a switching point of w,(v,).

3.4. Remark. This theorem implies that for n sufficiently large the"
function u, (v,) has at least as many switches as u, (v,).

Proof of Theorem 3.3. Let
0 =to<t1<---<tk<tk+l ZTO’
0 = 8§y << 31<...<3j< 3j+1 =T0)

be the switching points of #, and v,, respectively. Define functions u, (f),
v,(¢) on the interval (0,7T,] as follows

(4, (®), 2 (1),  te (0, min(T,, T),
(0, O) t e (min(T,, Ty), Ty|.

According to Theorem 3.2, u,,— u,, v,,~>v, weakly in L2((0, T,]) Theorem 2.8
implies that lu,(f)! = |v,(!)] = K a.e. on (0, T,].

Next we suppose the contrary theorem to 3.3. Hence there are a
positive number 4 and a sequence n;,— oo such that the funetions «,, (v,,)
have a constant sign on the interval (f;— 4, ;4 d) (or (s;,— 4, s;+ 9)).

Let the first case be true. Then

1. t -
2Ho<| f t) =, (01t = | [ 2(0) [ta(8) — ()1t |

for 1 =1,2,..., Where ¢ is the characteristic function of the interval
(t;— 6, t,+ 6). This contradicts the weak convergence u,—u,, because the
above integral is a linear bounded funetional on LZ((0, T,]).

(% (2), ¥, (2) =
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In the second case we can prove a contradiction analogically. Hence
the proof is completed.

3.5. THEOREM. Let problem (1)—(3) fulfils Assumptions A and B. Sup-
pose that the function g appearing in (2) changes sign m times on [ —1, 1],
and (u, v) € U x U is the optimal control of problem (1)—(3), (8)-(10) in the
domain P = (0, T]x (—1,1). Suppose that there is a number d > 0 such
that for T' e (T —d, T +d)

inf {sup [y(T", z; u,?)|: (u,v) e Ux U} > 0.
lz| <1
If n is the number of switches of the control (u,v) and n' is the number of
swilches of the optimal control (u',v’) of problem (1)—(3), (8)-(10) in the
domain P’ := (0, T'] x (—1, 1), then

1° there is an h > 0 such that, for T'e(T—h,T+h), 00 —n
<m+2; \

2° if m =0, then for T' e (T —h, T+ h) the difference between the
numbers of switches of w and u' (v and v', respectively) is 0 or 1.

Proof. 1° We have proved (Remark 3.4) that the functions %', o’
have at least as many switches as u, v, respectively, for 7" close to 7.
We have proved that «’(t) = u(t), v'(f) = v(¢) for ¢ small enough or «’
(v') has at least one switch more than % (v). Hence

liminfan’ > n.
T'-T

We now have to prove that

limsupn’ < n+m+42.
T'->T

Denote by N the number of the essential extremes of the function y(T,
x; w,v) on [ —1,1]. This function changes sign N —1 times at least; thus

(36) n=2N—-1-m—2 =N—-—m-3

(Theorem 1.11). Since y(¢, z; %', v )—>y(t, #; %, v) uniformly by T'->T
(Theorem 3.2 and Lemma 3.1), therefore y(T',x; ', v")—>y(T, x; u,v)
uniformly by T'—T. Since the derivative

7 o
==yt 5 w0
is bounded in the neighbourhood of 7' by a constant independent of ¢,
z, u, v (Lemma 2.4), thus for |7’ —T| sufficiently small the number of
essential extremes of y(71', z; w',%') on [—1,1] is not higher than N.
In this way we have proved the following
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3.6. Remark. Under the assumptions of Theorem 3.5 and if the
funection y(T, z; u, v) has N essential extremes, for 7' close to T the
function y(7', z; »',v") has at most N essential extremes on [ -1, 1].

Remark 2.12 implies that

(37) n' < N—1;

hence the consequence of (36) is »'—n < m <42, which completes the
proof of 1°.

2° Remark 3.4 allows us to consider only the case where

(38) n =n+2.
Inequalities (36) and (37) imply that
(39) n =N-—1.

Lebt 0 <<t <...<{<T, 0<s<8<..<8<T be the switch-
ing points of »’ and o', respectively. Using Definition 2.10, if

£

! °1 <0, then k+1=DN-2,
[w [rma
; ) >0, then k+1=N-1.
Ii
-
f w (t)dty (T, w5 w'yv') > 0,
t
where
@ :=inffwe[—1,1]: [y(I',2; w', o) = suply(T’, &; w', o)},

1&l<1
then the gets

Ao==(01ti)r 41:=(t;-1t;)a ceey Ak:=(t;c’T,)
and
Bl:=(3;)T')! Bl—1:=(8;—178;)7 cevy Bl:"'—"(s;’s'z)

and B,:= (0,s]) if k+1 = N—2 with

-
e:=(—1)"sign [ w'(t)ds
e
fulfil the assumptions of Lemma 2.7, which contradicts the optimality
of (v, v’). Thus we can conclude that
T
(40). y(T'y a5 W', v') [ o' (B)dt <0,

t
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If0o<t<...<t<T are the switching points of %, then

T

[ u@®aty(T, o; u,v)>0

]
for # € (—1, —1+h) (Corollary 1.12) because for n’ =n+2, n = N —3;
(36) thus, writing

@ :=inf{z e [-1,1]): |y(T, z; u,v)| = |SE]|1plly(T, &5 u, )},
<

we have

T
(41) Y(T, 21, ,0) [ u(t)dt >0,

4
since the function y (T, x; 4, v) which has N essential extremes on [ —1, 1]
changes sign (N —1) times because » = N —3 (Theorem 1.11).

Since there is exactly N essential extremes on [ —1, 1] (which follows
from »" = N —1, Remarks 2.12 and 3.6), we have, just as in the proof
of 1°, #;— x,. Hence (41) implies (for 7" close to T) the following in-
equality:

T
(42). y(T', 25 ', fv')f u(t)di > 0,
4
u'—u, v'~>v weakly in L2((0, T); thus
m{t: |u' (8) —u(t) 4+ [v'(2) —o(t)] > e}—>0

for any £> 0 when 7" is close enough to T
4 U1 2} ty

[u@at [ w@at>0, [u@a [ w(@)d=>o0,
0 t)

0 6

etc., and hence

T T
(43) [u@dt [ w@)ydt> 0.
tj ‘_‘i ‘
Inequalities (38)~(43) imply
(44) k=j+1.

An analogous proof for the function v with switching points s; < 8,
<...< s yields |
7
(45) [ o) dty (T, ay; , v) >0,
8
T
(46) [ o'ty (T, ay; w,v') >0,

8
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where

xy:i=sup{ze[—1,1]: y(T,x; u,v)l =E::1P'?/(T’ §; u, v)i},
<1

vy :=sup{w e [—1,1]: |y(T", z; v, v')| = suply(T", & ', v')]}

181<1
and
(47) l>i+1.

If the function y(T, «; w, v) changes sign (N —1) times on (—1, 1), then
(48) i+j>N—3

(Theorem 1.11). Since k+1 < N —1, inequalities (44), (47), (48) imply 2°
and Theorem 3.5 is completely proved.

We have proved that in case 2° if ' = n+ 2 inequalities (40) and
(41) hold. They imply (44). Inequalities (45) and (46) are also true and
they imply (47). This means that ¥k =j+1, ! =7+1. When #' = n -1,
inequalities (40), (41) or (45), (46) hold, which implies (44) or (47). In
this way we have proved the following

3.7. COROLLARY. Using all the notation and assumptions of Theorem 3.5,
2°, we have k = j+1 iff inequalities (40) and (41) hold, and 1 = i +1 iff
(45) and (46) are true.

Remark. To complete these investigations one could prove that
the number of switches is an increasing function of the final moment 7'
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