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Abstract. The main result of the present paper deals with the existence of solutions of random
functional-differential inclusions of the form

x(t, w)e G(t, o, x(-, @), X(*, w))

with G taking as its values nonempty compact and convex subsets of n-dimensional Euclidean
space R".

1. Notations and definitions. Let (2, #, 1) be a complete probability space,
where % is a o-field of subsets of Q and u a probability measure defined on #.
Let I =[o, 0+a] be a closed bounded interval and denote by £(I) the
Lebesgue o-field on I. By C(I, R") we denote the Banach space of all
continuous functions x: I —R" with the supremum norm || and L(I, R")
stands for the space of all L-integrable functions u: I —-R" endowed with the
norm |u| = {;|u(t) dt, where |-| is a norm of R". By AC(I, R") we denote the
space of all absolutely continuous functions x: I —R" with the norm defined by

o+a

lIxll = |x(a)+ | [%(2)ldt.

The symbols #(C), #(L) and #(AC) will denote the Borel o-fields of C(I, R"),
L(I, R") and AC(I, R"), respectively.

We shall also consider the metric space (Conv(R"), k) of all nonempty
compact convex subsets of R" with the Hausdorff metric h defined by
h(A, B) = max {h(A, B), h(B, A)}, for A, BeConv(R", where h(B, 4) =
maxbeninrae,q Ib — al.

Let (T, #) be a measurable space, X a separable metric space and
F: T—2(X) a set-valued function, where (X)) is the space of all nonempty
subsets of X.

F is said to be measurable (weakly measurable) if F~(E)= {teT: F(t)
NE #@}eF for every closed (open) set E c X.
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Let X and Y be topological Hausdorff spaces. We will say that
a multifunction F: X — 2(Y) is upper semicontinuous (u.s.c.) at x€ X if for every
neighbourhood U of F(x) there exists a neighbourhood V of X such that
F(x) = U for every xeV.

F is called u.s.c. on X if it is us.c. at every xe X.

F is said to be lower semicontinuous (l.s.c.) at Xe X il for every open set
U in Y with F(X)nU # O there exists a neighbourhood V of X such that
F(x)nU # @ for every xeV.

F is called lsc. on X if it is Ls.c. at every xe X.

If F is simultaneously u.s.c. and ls.c. we call it continuous.

TaeorReM 1.1 ([S], Th. 2.2, p. 64). Let X and Y be metric spaces.
A set-valued function F: X — Comp(Y) is u.s.c. on X if and only if for every xe X
and every sequence (x,) in X converging to x and every sequence (y,) in Y with
ya€F(x,) there is a convergent subsequence of (y,) whose limit belongs to F(x).

Assume now X and Y are normed linear spaces. They will be considered
as locally convex topological Hausdorff spaces with their weak topologies.

We will say that a set-valued function F: X - 2(Y) is weakly-weakly
upper semicontinuous (w.-w.u.s.c.) on X if for every weakly closed set M < Y the
set F-(M) = {xeX: F(x)nM # @} is sequentially weakly closed in X.

We say that F: X —>2(Y) is weakly-strongly upper semicontinuous
(w.-s.u.s.c) on X if for every weakly closed set M < Y the set F~ (M) is closed
(in the norm topology) in X.

Similarly we define s.-w.u.s.c. and s.-s.u.s.c. mappings on X. Weak forms of
lower semicontinuity are obtained upon replacing F~ (M) by F_(M) = {xe X:
F(x) = M}.

Denote by 4 and 2 the mappings defined on L(I, R") and AC(I, R")
respectively by

(L1) (T u)(t) = iu(‘t)d‘t for ueL(I, R"), tel,

(1.2) (2x)(t) = x(t) for ue AC(I,R" and ae. tel.

THEoREM 1.2 ([4), Prop. 2.1, p. 12). The mapping 7 defined by (1.1) has the
following properties:

(i) 7 is a linear isometry of L(I, R") onto AC(I, R"),
(1) the restriction of I to each weakly compact set A< L(I, R") is
strongly-weakly sequentially continuous as a mapping of A into C(I, R"), i.e. for

every uecA and every sequence (u,) in A weakly converging Lo u we have
|T u,— T ulo —0.

CoroLLARY l.1. ([4], Cor. 2.1, p. 13). The mapping T is weakly-weakly
continuous as a mapping of L(I, R") to AC(I,R"), ie. it is continuous as
a mapping between the spaces L(I, R") and AC(I, R") with their weak topologies.
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CoroLLARY 1.2 ([4], Cor. 2.2, p. 14). For every weakly compact set
A c L(I,R") the set K= A is a compact subset of C(I, R") and a weakly
compact subset of AC(I, R"). Furthermore, if A is convex, K is also convex.

Let A= {ueL(I, R"): |u(t)] < m(t) for ae. tel}, where m is an L-integ-
rable function. It is not difficult to see that A is a uniformly integrable, bounded
and convex subset of L(I, R"). Hence, by the Dunford Theorem (see [1]) it is
relatively sequentially weakly compact and by the Eberlein—-Shmul’'yan Theo-
rem (see [1]) it is relatively weakly compact in L(I, R"). Since A is convex and
closed it is also weakly closed in L(I, R"), and therefore A is weakly compact.
Hence and by Corollary 1.2, K = 4 A4 is a compact convex subset of C(I, R").

Let G: IxQx K xA— Conv(R") be given and for each weQ and (x, z)
€K x A, denote by #(G)(w, x, z) the collection of all L-integrable functions
u: I - R" having the property that u(t)eG(t, w, x, z) ae. in I. The set
F (G)(w, x, z) is called the subtrajectory integrals of the set-valued function
G(-, w, x, 2).

By 7 # (G)(w, x, z) we denote the image of #(G)(w, x, z) by 7. It will be
called the trajectory integrals of G(*, w, x, 2).

If F(G)(w,x,z2)#0 we say G(-,w,x,z) is Aumann integrable.
Its Aumann integral over the measurable subset U < I is denoted by
fuG(t, o, x, 2)dt, ie.

[Glt, w, x, 2)dt = {[ f(t)de: f(t)e F (G)(w, x, 2)}.
U U

The family {G(', @, X, 2)}wxzenxxxa Will be assumed uniformly inte-
grable, ie. such that for every ¢ >0 there is a & = d(e) >0 such that
Ifo G(¢, w, x, z)dt|| < ¢ for every we, (x, z)e K x A and all measurable sets
U = I with pu(U) < 8, where for AeComp(R") we set |[4|| = sup,..lal. It is
known that the family {G(-, w, X, 2)}(w.x.nenx kx4 i5 uniformly integrable if
and only if the collection of all selectors of all its members is uniformly
integrable.

THEOREM 1.3 ([4], Lemma 2.4, p. 16). Let G: I x Qx K x A— Comp(R") be
such that G(:,w, x,z) is Aumann integrable for each fixed weQ and
(x,2)e K x A. Then

(i) 7 F(G)(w, x, z) is a nonempty, closed and bounded subset of AC(I, R"),

(1) T [F(G)(w, x, 2)]} is compact in C(I,R") and weakly compact in
AC(I,R").

THEOREM 1.4 ([4], Lemma 2.5, p. 17). Under the assumptions of Theo-
rem 1.3,

i) T[F(G)w,x, 2]} =[T F(G)w, X, 2)]

(i) I [F(G)w,x, 2)]L =[T F(G)w, x, 2)] )¢
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THEOREM 1.5 ([4], Cor. 2.4, p. 19). Under the assumptions of Theorem 1.3,
T F (coG) is a nonempty convex compact subset of C(I, R"). Moreover,

() T F(coG)=[TF(G)]c
(i) T F(coG)=[T7 F(O)]kc

In the above theorems, Eﬁ}f, [Tjﬁc denote the closure of A in the weak

topology of L(J, R") and AC(I, R") respectively whereas [4] . is the closure of
A in the norm topology of C(I, R").

Finally, we recall the following definitions (see [5], pp. 150 -151).

A set-valued function G: I x 2 x K x A— Comp(R") is said to be weakly-
weakly upper semicontinuous (w.-w.u.s.c.) [weakly-weakly lower semicontinuous
(w.-w.-Ls.c)] in its last two nariables if for every (x,z)eKxA and every
sequence {(x,, z,)} in K x A such that |x, —x|.—0and z,—z as n = c0 we have

(1.3) lim A{ [ G(t, w, x,, z,)dt, [ G(t, ©, x, z)dt) =0
=t a0 v v

(1.4) [lim A({ G(t, w, x, 2)dt, [ G(t, w, x,, z,)dt) = 0]
n=cw 4] U

for every measurable set U c I and for ae. wef2, where — denotes weak
convergence in L(I, R").
If G: IxQxKxA—-Comp(R") is simultaneously w.-w.us.c. and
w.-w.Ls.c. in its last two variables we call it weakly-weakly continuous (w.-w.c.).
Replacing in the above definition z,~z by |z,—z| =0 we obtain the
respective “weak-strong” notions. Finally, replacing (1.3) [(1.4)] by

(1.5) lim { R(G(, w, x,, z,), G(t, w, x, 2))dt = O

(1.6) [ lim U}a h(G(t, w, x, z), G(t, w, x,, z,))dt = 0]

n-cw ¢
gives the strong-weak counterparts.

TueoreM 1.6 ([4], Lemma 3.7, p. 31). Suppose G: IxQx K x A
— Comp(R") has convex values and is w.-w.Ls.c. in ity last two variables. Then
T F(G)w, -, ") is w-s.ls.c. on KxA.

Now we define a set-valued function GUY on IxQx K by sectling
(GoI)(t, w, x) = G(t, w, x, Dx) for tel, we R and xe K, where & is delined
by (1.2).

By #(GD%)(w, x) we denote the subtrajectory integrals of the function
(G09) (', w, x).

Observe that #(G092)(w, x) = F (GNw, x, Xx) for weQ and xe K. By
T F(Go2)(w, x) we denote the trajectory integrals of (GOY)( , w, x).

2. Auxiliary results. The following lemma will play the crucial role in this
paper.
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LEMMA 2.1. Assume G: IxQx K x A - Conv(R") is such that

(i) G(-, ', x, z) Is measurable (with respect to the product o-field £ (I) x F)
for each (x,z)eKx A,
(i) IG(t, w, x, 2)|| € m(t) for ae. tel, we Q and (x, z)e K x A, where m is
L-integrable,
(iii) G is w.-w.c. in its last two variables.

Then

(a) 7F(GOD)w, *) is continuous for every we L2,
(b) TF(GO2)(-, x) is measurable for xeK.

Proof. We have to show that 7 % (G09)(w, ') is u.s.c. and ls.c. for fixed
weQ. Fix weQ and xe K and let (x,) be a sequence in K converging to x, i.e.
|x,—x|c—=0. Furthermore, let (y,) be a sequence in C(I, R") such that
V€T F(GOD)(w, x,) for n=1,2,... Then there exists a sequence (v,) in
A such that v, e # (GOD)(w, x,) and y, = T v, forn=1, 2, .,. The set {v,},2,
is relatively weakly compact and so there exists a subsequence (v, ) of (v,)
weakly converging to some ve A. Then by Theorem 1.2(ii) we have I v, —» 7 v.
Since y,, = 7 v, and y = J v it [ollows that |y, —y|c—0. We shall show that
yeJ ¥ (G02)(w, x), i.e. that v(t)eCG(t, w, x, Zx) for ae. tel.

Indeed, for each measurable set E = I we have

dist( [ v(t)dt, [ G(t, @, x, Dx)dt) < | [o(t)dt = [ v, (1) df|
L E N

E

+dist( v, (1) dt, | Gt, w, x,,, Dx,,)dt)
E E
+R([ G, @, xap Dx,)dt, | Glt, ©, x, Dx)dt).
E E

It is clear that |{zv(t)dt — (v, (t)dt| -0 for each measurable set E  I. Since
v, € F(GOD)(w, x,,) by the definition of Aumann’s integral we also have

HK
[, (dte[G(t, w, x,,, Dx,)dt
E E

for each mesurable E = I. Moreover, G is w.-w.u.s.C. in its last two variables.
Then for every measurable set E < I one has

ydt, [ G(t, w, x, Dx)dt) = 0.
L

ng

lim ([ G(t, w, x,,, 9x
I o E
Therelore, finally we get [ v(t)dte [ G(t, w, x, Yx)dt for each measurable set
Ec . Hence n(eG(t, w, x, ?x) for ae tel, ie veF(GDD)(w, x).
Since y = Jv, we have ye7 #(Go9) w, x). Therefore, by Theorem 1.1,
T F(GNY)(w, -) i1s us.c.

On the other hand, G is w.-w.ls.c. in its last (wo variables. Therefore by

Theorem 1.6, 7 F(G)(w, .,.) is w-sls.f dDg K x A. Then the superposition
T F(Gud) is Ls.c.

2 — Annales Polonici Math. 54.]
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Now observe that it follows immediately from a lemma of Nowak (see [7],
Lemma, p. 490) that #(GO2)(, x) is measurable for xe K.
Let U be a closed subset of C(I, R"). It is clear that

{0: T F(GoD)w, x)nU # B} = {0: F(GuD)w, x)nT ~'(U) # OJ)

for cach x e K. The right-hand side is in & since #(GO9)(-, x) is measurable.
Therefore we also have {w: 7 F(GOD)(w, x)nU # B}eF for every closed
set U< C(I, R"). Thus 7 #(Go2)(-, x) is measurable for fixed xe K. n

The following fixed point theorem is a consequence of ([5], Th. 3.7, p. 177).

LeMMA 22. Let G: IxQ2x Kx A - Conv(R") be w.-w.lLs.c. in its last two
variables and such that ||G(t, w, x, z)|]| S m(t) for ae te[o,o+a],
(x,2)e K x A, and weQ, where m is L-integrable. Then for fixed weQ there
exists x,€ K such that x,€ 7 #(GO09D)(w, x,).

Proof. By Theorem 3.7 of [5] and Theorem 1.6, 7 # (G) is w.-s.l.s.c. on
Kx A. Then the superposition 7 #(GU02) is lsc. on K for fixed weQ.
Furthermore, by Theorems 1.3-1.5 it has compact convex values contained in
K for fixed w e Q. Thus by Michael’s selection theorem there is a continuous
function f: K—C(I, R") such that f(x, )e7 #(GoD)(w, x,) for xe K and
we . Since K is a compact convex subset of C(I, R") such that f(K) c K,
by Schauder-Tikhonov’s fixed point theorem there is x, €K such that
x, =f(x,) for each weQ. Since f(x,)eJ #(GoY)(w, x,), we have x,
eJ #(GoD)w, x,) for veQ. u

3. Existence of random solutions. Consider a random functional-differential
inclusion of the form

(3.1 X(t, w)eG(t, o, x(*, w), X(*, w)) for te[o, c+a]
with the initial condition
(3.2) x(o,w)=0 for we

where G: IxQx KxA—+Conv(R"), K and A are as defined in Section 1.
A function x: I'xQ—R" is called a random solution of (3.1)~(3.2) il it is
measurable in w, absolutely continuous in ¢ and such that

X(t, w) eG(t, , x(t, w), X(t, w)) for tel and ae. wel,
x(o, w) =0.

In what follows for a given G we shall denote by S(w) the set of all fixed
points of 7 # (GU2) and by €(G) the set of all random solutions of (3.1)-(3.2).
Now we can prove the following theorem.

THEOREM 3.1. Let G: I xQ2x K x A—Conv(R") be such that

(1) G(-, -, x, z) is measurable (with respect to the product o-field &£ (I) x %)
Jor (x,z)eK x A,
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(ii) ||G(t, w, x, 2)|| < m(t) for ae. tel and for fixed weQ, (x, z)eK x A,
where m is L-integrable,
(ili) G is w.-w.c. in its last two variables.

Then the set €(G) is nonempty.

Proof. By Lemmas 2.1 and 2.2 the multifunction J # (G0 9) is such that
the conditions of Theorem 2(ii) of [8] are satisfied. Then there exists
a measurable function z: Q — K such that z(w) e S(w) for each w € Q. Therefore
for ae. weQ we have z(w)ed F(GoD)(w, z(w)). Thus there exists
v(w)€ F (G0 D) v, z(w)) such that z(w) = I v(w). We define x(-, w) = z(w) for
we Q. For every wef, z(w) is an absolutely continuous function from I to R"
with values equal to x(t, w).

For fixed tel, let w(t): 2—R" be defined by w(t)(w) = x(t, w) for we .
Observe that w(t) = I1,(z), where I1,: K—R" is defined by IT(x) = x(¢t) for
fixed tel and xeK. It is not difficult to see that I, is continuous and hence
measurable. Thus, w(t) = I1,(2) is measurable as a superposition of measurable
functions.

But z(w) = 7 v(w), x(t, w) = z(w)(t) and v(w)() e G(t, o, z(*, ), Dz(, w))
for tel and a.e. w €Q. Therefore x(t, w)e G(t, w, z(t, w), Dz(t, w)) for ae. tel
and ae wel.

It is not difficult to verify that we also have x(os, w) =0 for a.e. weQ,
Thus, ¢(G)# . =
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