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On a new characterization of the exponential functions

by M. Kuczma (Katowice)

§ 1. In the present paper we give a characterization of the expo-
nential functions by some simultaneous functional equations and in-
equalities involving only one variable. Another such characterization
has been given in [1].

We do not assume previous knowledge of the exponential functions.
We start at the point where the operation of exponentiation is defined
for natural exponents only. However, we assume the knowledge of the
basic facts about the limit processes.

The characterization in question is contained in the following

THEOREM. For every real mumber a there exists exactly one function
¢a(z) (real-valued and of a real variable) fulfilling for every x e (— oo, oo)
the following three conditions:

(1) Pa(22) = [po@)})?,
» —_— 1__.

(2) : fPa(_m) = T(w) ?
(3)° gal®) = 1+az .

Proof. At first we shall establish some properties of the sequence
x n
(4) (1+5) .

We shall prove that sequence (4) is increasing for n > —x. We have

x \nH! z\*  a"n+r+1)"T
n (r4+1)"" (n+4x)

_ n+w (n(oH—.cc—l—l))’“‘1
n \(n+1)(n+z)

ntw (1 3 @ )ﬂﬂ
oo (n4+1)(n+x) )
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For n» > —z we have

Y

RO R R

and hence, by the Bernoulli inequality,

(1_—__— )nl—l}l_ xr _ n .
(n+1)(n+x) n+x n+4+ax

Consequently, for n» > —ux,

x n+1 x n
(1+n+1) '(1+7%) =1

which proves that sequence (4) is increasing. It is evidently also positive:

(1-{—%)>0 for n>—=2.

Next we prove that sequence (4) is bounded above. Let N, be the
least integer exceeding |z|. Then, on account of what has just been proved,

we have for n > N,
T 5 oo
Hence, for n > N,
. r\» 1_%2)" 1
(5) (t+5) - ey T
n) ( .Nz)

Thus sequence (4), being increasing and bounded above, converges
for all real . We may write

(6) 7n(x) = lim (] + ) .
Evidently
(7) n(0)=1.

Moreover, since sequence (4) is increasing and positive (at least from
a certain term on),

(8) n(x) >0 for xe(— oo, 00).

Let 6, be a sequence such that limd, = 0. We shall prove that

n=>0

o e
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The sequence ¢, is bounded; consequently, there is a b such that |z] < b
and |z +6,| <<b, n=1,2,3,... Hence for n > b we have

xr\" bn ‘1,'+an bn
s S B s I R
and

n—1
Jx'+én" “(L‘" _]6—"‘ ( m_f_éﬂi {En—l—i
[ S | RN ey [

(51; (1
<|_‘.511_|,n(1+2)"'1_ i\ ) lanln(b)
n - \ .

n
+; ( -I-

This proves relation (9).
Now we shall prove the fundamental property of »(z). We have

n(@)n(y) = lim(] + g)n(1+%)n _ lim( +_tq£ +ry)n |

Nn—>00

In virtue of (9) with é, = xy/n
lim (1—}— vy +wy) = lim (1 + '-E-:—y)‘n = nlx+y),
n-ro0 N—»00 4

whence
(10) n(z+y) = n(x)n(y) .

Now, it follows from (10) and (7) that »(z) fulfils conditions (I
and (2). The inequality

(11) n(@) > 1+

is evident for x < —1 in view of (8). For @ > —1 we have n > —u.
n=1,2,3,.., and sequence (4) is increasing from the first term on.
Hence (11) follows, since 14z is the first term of sequence (4).

Te function 7(z) fulfils the conditions of the theorem with a = 1.
One can now easily check that the functions

(12) Pul) = n(az) = hm(1+ )

1N1—>00

fulfil conditions (1), (2), (3). It remains to prove the uniqueness.
Let us fix an a and let a function ¢(x) fulfil conditions (1), (2), (3).
It follows from (1) by induction that

P(2") = [p(1)1",
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whence, putting ¢ = x/2", we have
z\|*"
(13) ¢(x) = [97(7)] .
2
It follows from (13) and (3) for large » (so that 1-ax/2" > 0)

(14) wm>@+§r.

Similarly, for large =,

Hence by (2)

am\‘ o2n
1+—
(15) (0) = o < s
P = o= ar, aze?\ 2"
a2n
The sequence (1+‘;—f) tends, in view of (6), to n(ax). The sequence
Im2\ 27 . a2(D2 n . .
(1 — -47) is a subsequence of (1 — —2—) and tends, in view of (9), to 1.
n

Thus inequalities (14) and (15) yield

¢(x) = n(ax) ,
which proves the uniqueness and completes the proof of the theorem.
. §2. (12) and (10) imply
(16) ?a(T +Y) = al@) Paly)
for all real z,y. Writing @.(1) = p we get from (16) by induction
(17) polk)=p* for k=1,2,3,..

Thus the function g,(x) may be regarded as a generalization of the operation
of exponentiation to the case of arbitrary real exponents z. We may
write

(18) Pa(®) = p*, P = gdl),

the symbol p? being defined just by relation (18). The functions g,(x)
will be called exponential functions, and the number p = g,(1) will be called
the base of the function ¢,(x). In particular, the base of the function
n(x) = ¢,(x) will be denoted by. e:

n(x) = €*.
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Formula (6) gives immediately

(19) 6 = lim(l & £)" .
n

n—oo

The exponential functions form a one-parameter family. They may
all be expressed by the funection #n(z) (formula (12)), therefore their prop-
erties follow easily from those of 7(x). In the sequel we shall establish
the most important properties of the latter. '

§ 3. By (11) 5(x) > 1 for « > 0. Hence we get for h > 0

n(@+h) = n(@)n(h) > n(z)

in virtue of (10) and (8). Thus the function #n(x) s strictly increasing.
Next, the evident inequality

[(5)-(3)] =0

yields the relation

whence we get by (10) and (1)

(20) ﬂ(:v;ry) <n(w)—;n(y).

d

Thus the function n(z) is convez ().
For z¢(—1,1) we have N, =1 (N, being the least integer exceed-
ing |z]). Thus we have by (5) for ze(—1,1) and » >1

z\" 1
(21) ) (1—!—;) <1_$.

(21), (6) and (11) yield the estimation valid for x e (—1,1)

1
142 < 7n(x) R

i.e.

z
(22) < 7nzx)—1 <1Tm'

(!) This is a weaker form of convexity. The stronger form: n[iz—+(1—A4)y]
< @)+ (1—A)ny), z,¥ e(— o0, o), 41€(0,1), can be proved by the use of (20)
and of the continuity of #(x), or directly from the fact that #"'(x) = n(x) > 0. The
necessary properties of the function #(x) (continuity and differentiability) follow.
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From (22) we obtain two important limit relations:

limy(z) = 1, lim"—(%——1= 1.

x>0 0
Hence
limn(z + %) = limn(2)n(k) = 7 (x),

h—0

i.e. the function n(z) is continuous in (— oo, oo). Further,

fim 72 E1) =2) _

h—0 h—0

i.e. the function n(x) is differentiable in (— oo, oo) and

n'(x) = n(x) .

Hence it follows that 5(x) is of class C™ in (— oo, o) and all its derivatives
are equal n(x). This allows us to write the Taylor-Maclaurin formula

xnl 42

(@) =142+ 1 + T )P”,n(o,,), 0<by<1,

"
and since the remainder —n(an) tends to zero as m—oo, we have

=<}
mn
n=0

(23) n(z) =

Consequently, the function n(x) is analytic in (— oo, o).
The relations

(24) im ™% — oo, lim amy(@) =0,

z—oo & I—>—00
for every fixed positive integer m, can easily be deduced from (23) and (2)
or obtained by the use of de 1'Hospital’s rule. They can also be obtained
in an elementary way from the facts that s(x) is monotonic and fulfils
conditions (1) and (2), just as corresponding relations have been obtained
in [2] for the logarithmic functions.

§ 4. There is still one important question left unsettled. It wax
pointed out in § 2 that functions (12) may be regarded as an extension
of the exponential functions (17), defined for a natural argument only,
to arbitrary real values of xz. Now, the functions

(25) p(k) = p*, k=1,2,3,..,
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are defined for arbitrary real p. The question to be settled is whether
all functions (25) admit an extension onto the whole real axis (2); in other
words, whether for every real number p there exists an exponential
function (18). It is obvious from the condition p = ¢.(1) = n(a) that
the answer is no: Number p must be positive. But there is no further re-
striction: for every positive p there is an exponential function ¢.(x) whose
hase is just p. In fact, on account of (24) we have

(26) limy(x) = oo, lim n(x)=0.

T—x aI——00

((26) may also be deduced from (2) and (3).) Since the function #(z) is
continuous and strictly increasing, it has a unique inverse »~(x), which
is also continuous and strictly increasing and maps (0, co) onto (— oo, o0).
Consequently, for every p > 0 the equation p = n(a) has the unique
solution

(27) a=nYp).

The function 7Y(x) is called the natural logarithm of x and is denoted
by lnz. Thus (27) becomes

(28) a=Inp.

Relation (27) or (28) establishes a connection between the base of
the exponential function g¢.(z) and the number a occurring in (3). It is
important, since, when we are obtaining properties of the function g4(z),
the parameter a will play an important role. (E.g. the formula of differentia-
tion @q(r) = ag.(x) contains a.) It may be more convenient to have rela-
tions involving the base of the exponential function. Thus the formula
of differentiation may be written in view of (18) and (28) as

(p™) = p*Inp .

§ 5. We have defined the operation of exponentiation p* for every
p >0 and every real x:

(29) P*=nnYp)z) .

Now we shall prove some further properties of this operation.
First we note that

(30) p*>q* whenever 0<gqg<p, x>0,
(31) p* << ¢* whenever 0<q<p,s<0.

Relations (30) and (31) result immediately from (29) in view of the fact
that the functions n(xr) and 5~'(z) are both strictly increasing.

(» Of course, we ask for extensions that are exponential functions in the sense
of §2.
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Next we show that for every positive p, ¢ and real # we have

(32) (pg)* = p"q" .
Let us write
np)=ea, nHg=b, atb=c.

Then, according to (10),
_ n(e) = n(a+b) = n(a)n(b) = pq,
ie.

¢ = 57 pq) .
Hence, in virtue of (29),

(p9)" = n(n~(pq) ) = n(cx) = n(aw+bx) = n(azx)n(bz)

= n{n(p)a)n(n"(9)) = "¢,
Le. (32).
Lastly we prove that for every positive p and every real #, ¥y we have

(33) (p°) = p™.
Put ¢ = p* Then

(0 = ¢' = n(n"(@y) .
But ¢ = n(y~}(p)x). Hence 77(q) = n~!(p)= and

Ty

@") = nln"(p)zy) = p™,
i.e. (33) holds.

§ 6. The idea of such a characterization of exponential functions
is inherent in the following characterization of the number e, due to
W. Sierpiniski ([3], § 47). Sierpinski proves that there exists exactly one real
number a such that

=142
holds for all real z. This number is denoted by e and is given by formula (19).
This definition of ¢ has led me to the theorem of the present paper. Sier-
piniski’s definition of e is essentially equivalent to that given in § 2. of
the present paper. But the definition of exponentiation in Sierpinski’s
book is different.
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