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Angles and quasiconformal mappings on Riemannian manifolds

by MARriA WoiclEcHOwsKA (LodZ)

Abstract. In this paper the authoress, following F. W. Gehring and S.B. Agard,
introduces a definition of the measure of a topological angle on a Riemannian manifold and
gives a characterization of quasiconformal mappings in terms of angles for Riemannian
manifolds.

Introduction. Quasiconformal mappings can be studied as, in some sense,
angle-preserving. Such mappings are almost everywhere differentiable, but
not necessarily everywhere. Therefore an exceptional point p can lie on
a differentiable curve which, under a quasiconformal mapping, is mapped
onto a curve having no tangent line at the image of p. Then the usual
measure between two curves which are images of differentiable curves under
quasiconformal mapping, is meaningless. The problem of defining the
measure of an angle, possibly without tangent lines at the vertex, has been
studied in the plane by F. W. Gehring, S.B. Agard and O. Taari. The
definition of measure for a topological angle in the n-dimensional Euclidean
space given by Agard, [1], and on a Riemannian manifold, introduced in
the present paper, are formally adapted from the plane.

There exist a large number of equivalent definitions for quasiconformal
mappings in the n-dimensional Euclidean space. S. B. Agard gave in [1]
a charactenization of these mappings in terms of angles. In this paper we
give such a characterization for quasiconformal mappings on Riemannian
manifolds.

The authoress would like to express her gratitude to Prof. Julian
Lawrynowicz for suggesting the problem.

1. Preliminaries. Throughout the whole paper the manifolds are supposed
to be C*-differentiable, paracompact and connected. The tangent bundle of
a differentiable manifold M is denoted by TM and the tangent space at
peM by T,M. The derivative of a differentiable mapping f: M = N is
a fibre mapping Df: TM — TN. The set of real numbers is denoted by R.

Let M be a C"-manifold. An open set U c M is called a C™-coordinate
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neighbourhood of M, m < n, if there is a C™-diffeomorphism g of U onto
an open set in R?; u is then called a coordinate mapping. .

By a curve on a manifold M we mean a continuous mapping y from
a closed interval [a,b], a < b, to M. A curve y is called differentiable
if y is continuously differentiable. A Borel measure in a manifold M is
any measure defined in the family of Borel sets of M. Such a measure will
be denoted by ty.

By a Riemannian manifold we mean a manifold which has a fixed
Riemannian metric. The distance between points p and g of a Riemannian
manifold M is denoted by dy (p, q). The symbol /(y) denotes the length of
a piecewise differentiable curve y on a Riemannian manifold M.

Let y be rectifiable and let s(f) denote the length of the restriction of
y to [a,t],a <t < b. For each rectifiable curve y there is a unique curve
y:: [0,1(y)] = M with the property y = y, 0s. The curve y, is called the
parametrization of y by means of its arc length.

Let y be a rectifiable curve and ¢ a Borel function on a Riemannian
manifold M. Let y, be the parametrization of y by means of its arc
length. The integral of ¢ along y is defined by

1(y)
feds= [ eoy,ds,
y 0

provided the latter integral exists. Otherwise the integral of ¢ along 7 is
undefined.

Suppose now that I' is a family of curves in a Riemannian manifold
M. We denote by adm I' the class of all non-negative Borel functions g
in M which satisfy

feds>1

¥
for all rectifiable curves yer.

For each positive real number p we define the p-module of I' as follows:

mod, I' = inf | ¢”dty,
M

where the infimum is taken over all gpeadm I'. If I' is empty, we put
mod, I' = oo.

Let M and N be n-dimensional Riemannian manifolds. A homeo-
morphism f: M — N is called a quasiconformal mapping if there is a con-
stant Q such that

() Q™! mod, I < mod, f[I'] < Qmod, I

for each family I' of curves in M and its image f[I']. If (1) is satisfied,
f is said to be Q-quasiconformal.
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By a simple curve on a manifold M we understand the homeomorphic
image of an interval [a, b), [a, b] or (a,b], where a < b. The jacobian of
S will be denoted by J,.

Let M be a manifold. A set Ec M is a null set if uy(EnU) has
Lebesgue measure zero for each coordinate neighbourhood U < E and each
coordinate mapping u: U — R" (of class C*). We say that a condition holds
almost everywhere in M, if it holds everywhere except for a null set.

2. Topological angles on Riemannian manifolds and their measure. Let
M be a Riemannian manifold. By a topological angle at a point p,e M we
mean a pair of simple curves (y,,?7,), with a common initial point p,,
termed the vertex.

The measure A4y of a topological angle a« = (y,,7,) on M at p, is
defined by:

dy (py,
2) Ay (@) = lim inf 2 arc sin u Py, P2) .
P1eMy dM(Pl,Po)‘l‘dM(Pz: pO)
P2€Y2
P1.P2P0

Let u: U > M be a coordinate mapping such that p,e U. If simple
curves u(y; NnU) and u(y; nU) have unique tangent lines at u(py), then
the angle (y,, 7,) is said to be ordinary.

Definition (2) coincides with the usual one in the case when (y,, y,)
at p, is an ordinary angle (cf. Theorem 2.2 in [1]).

Let N be a Riemannian manifold and f: M - N be a continuous

mapping. By f(x) we will denote the angle (f(y,), f(y2) on N at f(p).
We say that a is non-zero if Ay(a2) > 0. If M = R", we write Ay = A.
LeMMA 1. Suppose that:

(i) M and N are n-dimensional Riemannian manifolds,

(i) f: M > N is a C'-diffeomorphism,

(ii) po is a point of M,

(iv) (Df)(po): T,, M - Ty N is an isometry.
Then, for each ¢ > 0, there exists an open set V containing p,, such that
for any p;,p,eV

3 dy (f (py), S(p2) < (1+¢€)dy (py, pa)-

Proof. If (Df)(py) 1s an isometry, we have |Df| (Po) = 1. Then for
each ¢ > 0, there exists an open and convex set V containing p, such
that for each peV

1D IH(p) < 1+e.

Let p, and p, be any points of V and let y be a geodesic joining points
p, and p, such that

I(y) = du(py, p2)-
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Then (cf. Theorem 4.11 in [5])

i

de(f (), () SISO < [ IDfllds < (L+&)dy @y, p2),

0
whence we obtain (3).

LEMMA 2. Let N and N’ be Riemannian manifolds of dimension n. Suppose
v: N - N’ is a C'-diffeomorphism such that (Dv)(qo): T,y N = T, N’ is an
isometry, where q,€ N. Then for any ¢ > O there exists an open set V< N
containing q, such that for any q€ V and any ordinary angle § in q

(4) 1+ 2A(v(B) < Av(B) < A(v(P)(1+¢)*.
In particular, if q = q,, we get
) A(v(B) = Ax ().

Proof. From Lemma 1 it follows that, for any &> 0, there exist
open sets V; ¢ N and V, = N’ such that g, e V;, v(gy)e V,, v(V;) = V,, and
for any p, p,, p, €V, we have

dy(v 1(py), v 1(p2)) < (1 +€)dy(py, P2)s
dy(v (), v '(P) < (1+8)dy-(pi,p), i=1,2,
while for every ¢, q,,49,€V,
™ dy: (v(q1), v(@2)) < (14+8)dn(4s> 92),
v (v(g), v(g) < 1 +&)dn(q ), i=1,2.

Inequalities (6) hold for every p,p,,p,€V,, in particular for p, = v(g,),
p, = v(q;) and p = v(q). Then we get

®) dy (g1, q2) < (L+e)dy (v(qy), v(92),
dy (g, @) < (1+9)dy(v(g),v(9), i=1,2.
Hence by (7) we have

(6)

dy (44, 42) 5 dy (v(41), v(42))
9 <
®) dy (41, 9)+dn (a2, 9) (1+2) dy- (v(qy), v(@)+dn (v(g2), v(q)
and
(10) dN'(V(‘h), V(‘h)) < (1+¢p dn (g1, 92)

dy(v(q,), v(@))+dn (v(q2), v(9)) dy(qy,9)+dn(d2,9)

Inequalities (9) and (10) imply (4). Let now g = g,; since € can be chosen
arbitrarily near zero, (5) follows.

THEOREM 1. Definition (2) coincides with the usual one in the case when
(71, 72) is an ordinary angle at p,.

Proof. This follows from Lemma 2 and Theorem 22 in [1].

3. Quasiconformal mappinés. Now we are going to give a characterization
of Q-quasiconformal mapping in terms of angles.
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THEOREM 2. Let M and N be Riemannian manifolds of dimension n.
A homeomorphism f: M — N-is Q-quasiconformal if and only if
(@) for every vertex p, in M and every non-zero ordinary angle a at p,

AN (.f(a)) > 0’

(b) for almost every vertex p. in M and every ordinary angle a at p,

Av(f (@) = Q7" Ay ().

Proof. Suppose that M and N are diffeomorphic to open subsets M’
and N’ of R* by means of C'-diffeomorphisms u: M - M’ and v: N - N'.
Let po be a point of M and let g, = f(p,).- We may choose u and v so
that (Du)(p,) and (Dv)(q,) are isometries. Suppose ¢ is any positive number
and M and N are so small that 4 and v are (1 +¢)quasiconformal and
the inequalities of Lemma 2 hold on M and N.

Assume now that a homeomorphism f: M - N is a Q-quasiconformal
mapping and « is a non-zero ordinary angle at p,. Since f is Q-quasi-
conformal, then vo fopu~! is (1+¢&) Q-quasiconformal. Hence, by Theorem
5.2a in [1], we get

Ax(f (@) > 0.

Thus we have obtained inequality (a).
In order to prove (b), we assume that f is differentiable at p, with
a non-zero jacobian. Consequently, u(p,) is a point of differentiability of
vo fou~! with a non-zero jacobian and, by Theorem 3.3 in [1],
A(p@) Q" (1+6)™*" < A((vo f)(@).
Applying inequality (5), we get
Ay @ Q7" (1+e)™*" < An(f (2)).

Since £ can be chosen arbitrarily near zero, (b) follows.

Suppose now that a homeomorphism f: M — N satisfies conditions (a)
and (b) of Theorem 2. Let p be a point of M’, and «' any non-zero
ordinary angle on M’ at p’. Because u is a difffomorphism, the angle
@ = u~'(a') is a non-zero ordinary angle on M at p, where p = u~!(p)).
Then (a) implies

Ay(f (@) > 0.

Since v is a diffeomorphism, we obtain

A((vo fou NH(@) > 0.

We shall say that pe T if inequality (b) holds at p. Let p’eu(T) and
let ' be an ordinary  angle at p’. Lemma 2 and (b) yield

A((vo fou™ (@) = (1+e) *Ay(fou™ N (@)
> 0 M (1+6) 2 Ay (01 (@) = Q2" (1+6) A ().
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Hence, owing to Theorem 5.2. in [1], vo fou ! is Q(1+¢)*"-quasicon-
formal. Since z and v are (1+¢)quasiconformal, the homeomorphism f is
Q (1 +¢)*"* 2-quasiconformal. In order to prove our theorem in the general
case, we may assume that M and N are covered by a countable family
of coordinate neighbourhoods such that on each of them f is Q(1+¢&)*"*2-
quasiconformal.

Let now I' be a family of curves on M such that mod, I’ # 0 and
let peadm f[I']. Then, by inequality 7.2 in [5], we have

]{e"drN > Q '(1+¢)2 Ai (eo fYIDf|dry.

As the function (¢o f) ||Df|| is an element of adm I" (cf. Lemma 7 in [7]),
we get

(11) mod,,.f[l'] > Q0(1+¢Pf"*?mod, I.

Since this remains valid for mod, I’ = 0, (11) holds for every family of
curves in M. In view of the fact that f~! is also Q(l+¢)*"*2-locally-
quasiconformal, we obtain

(12) mod, f[I'] > Q(1+¢*"*?mod, I'.

Letting in (11) and (12) ¢ - 0, we conclude that f is Q-quasiconformal.

References

[1] S.B. Agard, Angles and quasiconformal mappings in space, J. Analyse Math. 22 (1969),
p. 177-200.

[2] — and F. W. Gehring, Angles and quasiconformal mappings, Proc. London Math. Soc.
14 A (1965), p. 1-21.

[3] P. Caraman, n-Dimensional quasiconformal (QCf) mappings, Editura Academiei Romane
and Abacus Press, Tunbridge Wells, Kent 1974.

[4] S. Kobayashi and K. Nomizu, Foundations of differential geometry I-II (Interscience
Tracts in Pure and Applied Math. 15) Interscience Publ. New York—-London-Sydney
1963-1969.

[5] K. Souminen, Quasiconformal maps in manifolds, Ann. Acad. Sci. Fenn. Ser. Al 393
(1966), 39 p.

[6] J. Vidisala, Lectures on n-dimensional quasiconformal mappings, Springer-Verlag, Berlin-
Heidelberg-New York 1971.

[7] M. Wojciechowska, Capacity and quasiconformal mappings on Riemannian manifolds,
Rev. Roum. Math. Pures Appl. 21, 5 (1976), p. 609-629.

UNIVERSITY OF tODZ, DEPARTMENT OF GEOMETRY

Recu par la Rédaction le 28. 11. 1977



