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I. INTRODUCTION

The beginning of the theory of covariant differentiation which was
preceded by Riemann’s and Christoffel’s papers ((1868) [35] and (1869) [7])
may be taken back to the turn of the nineteenth century, when Ricei
and Levi Civita began a systematical investigation of parallel displace-
ment of vector fields (1901) [24]. Then formulae for covariant derivatives
of covariant vectors and tensors of arbitrary valence appeared (J. A.
Schouten (1922) [36]). These methods were of experimental nature.
The idea of general definition of the covariant derivative of any geo-
metric object appeared simultaneously with the notion of such an object
in the monograph of Schouten and Struik (1935) [38]. The authors noticed
that the transformation rules of Pfaff derivatives of the geometric objects
in question were complicated in comparison with those rules for the
original objects. But the transformation rules of the corresponding co-
variant derivatives were linear. The authors concluded that the operation
of the covariant differentiation did not change the type of the object.
This fact has its contemporary geometrical interpretation, when we
postulate the invariancy of the rigging of a fibre. Nevertheless we now
observe that the transformation rules of covariant derivatives of non-
linear objects have a complicated form in general.

Schouten and Struik proposed to define the covariant derivative
of a geometric object by six axioms. We repeat the first of them:

A. The covariant derivative of a geometric object is a geometric object
of the same type as the original object.

However, a profound analysis contained in 8. Golgb [12]-[15] and
in S. Golab and J. Aczél [1] showed that the axiom A together with the
following:

B. The covariant derivative of a geometric object s a concomitant
of that object which depends on the components of the original object, on
their first Pfaff derivatives and on any auxiliary objects,
which yields a more accurate description of the admissible type, de-
fine the covariant derivatives in the cases investigated. DBut the above
definition does not guarrantee uniqueness, because the concomitants of
the covariant dervivative also satisfy these axioms.
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An analysis of the papers of E. Cartan and a rapid development of
the theory of the fibre bundles [39] suggested a different treatment of
these questions. There appeared a notion of connection in a principal
fibre bundles (C. Ehresmann (1950) [10]), and in the associated bundles
(K. Nomizu (1956) [34]). After the papers of Haantjes and Laman
(1953) [167, the fields of geometric objects may be investigated as cross-
sections in convenable fibre bundles. This point of view permits the
use of an intrinsic method. Such a formulation of the notion of the co-
variant derivative was given by R. Crittenden (1962) [8]. A connection
bound with an invariant rigging of surfaces was investigated by G.F.
Laptév (1959) [28].

The purely differential objects form a separate and perhaps the
most important topic in the theory of geometric objects and in differential
geometry. Monograph [1] is devoted principally to those objects. The
strueture of the corresponding groups, which are named differential groups,
was investigated by V. V. Vagnér and E. B. Dynkin (cf. [45] [46] [9])).
Ehresmann’s theory of jets (ef. [11] [25]) appeared as a useful algorithm
for investigating groups and pseudogroups which are bound with the
transformations of local coordinates of the base. A. Nijenhuis, who had
defined natural bundles, gave a possibility of intrinsic treatment of holo-
nomic cases (1960) [33]. The investigation of connections in the bundles
with higher order differential groups was initiated by V. Hlavaty
(1949) [17]. The computation of the corresponding connection form in
the case of an immbedded manifold is due to P.I. Shvéykin, (1955) [42],
(1958) [13].

The Lic differentiation of gcometric objects, which was initiated
by W. Slebodzinski (1931) [40] (cf. also [49]), is strongly bound with
the covariant differentiation (cf. [8]). B. L. Laptév investigated the Lie
derivatives in bundles with a field of a resistant clement (1956) [27].
An interesting connection between the equations of invariancy of
an object and its Lie derivative was found by L. E. Evtushik,
(1960) [19].

This brief historical sketch has indicated those turning points in
the development of the theory which are known to the author. The fol-
lowing part of the present paper is devoted to the covariant differentia-
tion of the geometric objects based on the theory of connections in the
fibre bundle. We start with an intrinsic expression, which consequently
implies the expression by coordinates. In the third chapter we treat the
Lie derivatives and their relations to the covariant ones. The fourth
chapter is devoted to the connections in bundles with the differential
structure group. We touch upon the prolongation theory there. In the
fifth chapter we present a solution of a problem posed by Schouten and
Golgb, namely how to define the covariant derivative of a geometric
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object with the aid of a funetional equation. We also add a brief sketch
of Laptév’s theory of prolongations.

The author wishes to express his gratitude to Professor S. Goigb
and to Professor G. F. Laptév for their valuable advice.

II. COVARIANT DIFFERENTIATION IN FIBRE BUNDLES

In the present chapter we assume that all manifolds, mappings, etc.
are at least twice continuously differentiable. Thus if we write “differen-
tiable”, then we mean the differentiability of a definite class, no less
than C2

We shall denote the n-dimensinal Euclidean space by R".

Let M be a manifold and p one of its points. Let &, be the algebra
of differentiable functions defined in an open neighbourhood of p. Let
pe (t =0, po = p) be a differentiable arc in M. The vector tangent to
the arc p, at p, is defined as a mapping x: F, — R' as follows: if ce #,
then we put

(1) 0@ = (do(pe)/dt)]ss.

In other words, o, is a derivative of ¢ in the direction of the arc p,
at p. Let &', ..., & be the local coordinates in a neighbourhood @ of p.
Then » coordinate lines pass through p: p., ..., p,n. Each of them de-
fines a vector which will be denoted Ly (8/0£°%), (¢ = 1,...,n). We shall
show that the set of all vectors at p constitutes a vector space Tp,(M),
the tuple (9/9£),, ..., (0/0&"), being its basis. Given any curve p; (p, = p),
we express it in terms of local coordinates, viz. p, = {&'(t), ..., £ (1)}
Thus we have

(A0 (P 1) g = (30/0E"), (A€ (8)/d1) 1mo,

which proves that every vector at p is a linear combination of (9/0&!),, ...
.vey (0]0€"),. Conversely, if we are given a linear combination v%(9/3&%),,
then we define a curve p, by its coordinates

(L) = (&%), +0"t.

The vector tangent to this curve at { = 0 is equal to v%(9/0&%),.
The independence of the basic vectors d/d&" may be proved as follows:
Suppose that a“(3/0&%), = 0. Then we have

0 = (£),(a%0/08") = a° 8" = a*

and consequently all a® vanigh.
The set of tangent vectors at p is called the tangent space at p, and
we denote it by T,(M).
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Let f be a mapping of the manifold M into a manifold N (which may
be A itself). Then f induces the following tangential mapping of
»(M) into Ty, (N). If an are p, = ) defines a vector @, then we put
y = f.x, where y is a vector tangent to the arc ¢, = f(py). Thus y is the
induced tangential map of @ by f and f, is called the induced mapping.
We shall sometimes write simply

(2) x = (dpjdt);_y and g == (df (p)]dl) .

We see that this notation is consistent with (1).
We consider also the linear spaces of linear forms on 7, () at each p.
If we have such a form §, then its value on the vector © will be denoted by

Jv  or by J,v)>.

The mapping f: M — XN considered above induces also a mapping
of linear forms on 7',(.) into those on T, (). This induced mapping
of linear forms will be denoted by f*. It is defined by the formula

<.f*"’, x) = <"’af*$>-

The differentials of the local coordinates (d&'),, ..., (d€"), may be assumed
as a base of the space of lincar forms at p. Then the following equalities

hold:
/(IE", 0 \ = 0j.
N e

We take into considerations a principal fibre bundle I’ = P(B, ¢, 7)),
where the differentiable manifold B is its base, ¢ is a strueture group
and n is the canonical projection of P onto B. We denote by ¢ the cano-
nical right action of ¢ on P. We denote by o,p the result of this action
by an eclement ge/ on a point peP. o induces a tangential mapping of
T.(G) (e denotes the nnity in () into 7,(P) at each peP. This tangential
mapping is invariant under the commutator of the corresponding Lic
algebra and it may be extended to the so-called natwural homomorphism
of the Lie algebra @ of (f into the Lic algebra based on T,(P) (cf. Pontria-
gin, Topological Groups, Chapter X). That homomorphism, when
restricted to a fibre, is an isomorphism. Sometimes we shall write simply
p-g instead of o,p.

A connection in P is a distribution of 7,(P) at every p into a direct
sum of subspaces T),(P) and 7T, (P) so that 7,(P) is tangent to the fibre
through p. This distribution is invariant under o and it depends differen-
tiably on the point p.

A given connection implies the existence of a field of lincar forms
wy: T,(P) - T,(G) which maps T, (P) onto a zero vector in T, (G). Morc-
over, o establishes the natural isomorphism between the corresponding
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Lie algebras. The invariancy of the connection implies the following
property of the form w: if ®el),(P), ge* then we have

(ory 0,8 = adj(g ™) <o, ®

where adj(y) = Adj,.(y) and Adj(g)h = ghg™* for any ¢, heG.

Let p, and ¢ (te[a, b] = R") be two differentiable curves such that
n(pe) = aw(q) and t; # ¢, implies py # p, and ¢ # ¢, Thus there exists
a curve ¢, < (¢ such that we have p, = g, .

ProrositioN 1. We consider the wvector fields tangent 1o the above
defined curves, a, == dp,/dt and y, = dg,Jdt. Then the following equality
holds

oy Yy = adjlgi’) <w, 2> -+<{gi dge, x>

A curve in P iy said to be horizontal if and only if every vector tangent
to it is horizontal, i.e. if it belongs to the horizontal subspace 1', (P).

Prorosirion 2. LKvery differentiable curve p, « P may be lifted into
a horizontal one, i.e. there exists a horizontal curve of the form Py, = pigi’,
the curve g, = G being determined by the equation

~1
(11 (1‘(]; = (!)7’6'

For more adequate definitions and the proofs the reader may
consult the book by K. Nomizu.

Let F De a diffecrentiable manifold. We assume that ¢ acts on F
associatively from the left. This means that there exists a mapping
A: GXI'— F such that if ¢, he@ and seF, then we have

A (Ay8) = Ays.

Sometimes we shall write simply gs instead of A,s.

We consider a fibre bundle W = W(B, &, I, II) with the standard
fibre I and the canonical projection /7, B and G being as above. We
say that W is associated with P if and only if there exists a mapping A
of PxF onto W such that we have for every geli, sel’

(3) Ayl gs) = 4(p, s)
and if p # ¢, then
(4) A(pys) # A(q, s).

A pair (p,s) will be called a representation of the point A(p, 8).
Exampres, If B is an n-dimensional manifold and L, is a linear
group of automorphisms of R", then we consider P(B, L,, n) as a bundle
of linear frames over 3. The points of P arce the n-tuples of vectors ¢,, ..., ¢,.
Every vector i, is a certain linear combination of the basiec vectors
d/0&, ..., 0/0&". A field of frames (4,),, ..., (3,), in a certain domain
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O « B (be0)is called holonomic if and only if there exists such a parametri-
zation of @ that the (i,), are respectively tangent to the parametrical
curves passing through the point b. In other cases we call that field of
frames (&,)p a non-holonomic one. We construct an associated bundle
if we assume R"™ as its standard fibre. If a point ¢R"™ has coordinates
v, ..., 2", then we put

{(2 N | ny __ .azs
ARy conyty; vy ..., 07) = 0%,

In such a way A maps P x I onto a vector bundle over B.

Another example will be obtained if we replace the group L, of the
previous example by its subgroup P,_, = L,/C,, C, being the group of
homoteties of R".

We now take the projective space 2"~ ' as the standard fibre of the
associated bundle. The canonical mapping of L, onto P,_, induces a map-
ping of the bundle P(B, L,, =) onto its proper subbundle P(B, P,_,, «).
We now introduce the following relation ~ among the points of the
Cartesian product P(B3, P,_,, n)xXP" ':

(@, ) ~ (b, y) = a b=ay'y=gum.
ge¥
We define A as the canonical mapping of P(B,P,_,, n1)xZ" ' onto
P(B, P, _, 1) XP" '/~. Thus the map by A is a bundle of Penzov’s ob-
jects (cf. [17).

A field of objects is a cross-section i a convenable bundle.

Let us turn to the general case. We shall consider a differentiable
cross-section X: B — W(B, G, F, IT). 1t will not cause a misunderstand-
ing if we use the same symbol for a mapping of B onto a cross-section
and for the cross-section viewed as a set of points.

Provosrrion 3. (Cf. [8].) If X ¢s a cross-section in an associuted
bundle W(B, G, F,II) then there exists a mapping Z: P(B,G,n) - I
defined as follows: if peP then we have

(5) Zp =8 = A(p,s) = X(ap).

This mapping Z salisfies the equation

(6) Zop,1r = A, & (geG, arbitrary).

Conversely, if we have a differentiable mapping f: P — F which satisfies

foog1 = Ayf, then the set of points A(p, f(p)} is a differentiable cross-
section in W.
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Formula (5) asserts the commutativity of the following diagram:

P £ > W

T /X
B

Each mapping & corresponding to a section X induces a tangential
mapping (Z.)p: T»(P) - Ts(F). Implication (5) yields the following:

(7) (Zy)p® = u < A, (x, u)eTA(r,s)(F)

where xeT, (P) and weT(F).

Let y =y, (beB) be a differentiable vector field on B. We lift y
onto a horizontal vector field on P. Thus we obtain a vector field y, T, (P)
(p eP) such that x,y, = Y.,- We see that this horizontal lifting is a linear
operation which maps | ) T%(B) X P onto | T,(P). It depends of course

b P

on the connection in P which we have chosen. We denote the operation
of horizontal lifting by H.
DEFINITION 1. The linear form

Ve Z,0H
is called the covariant differential of the cross-section X with respect to the
given connection. The value of this form on a vector y, ie. V%, y>
= (¥, H,y), is called the covariant derivative of X with respect to y
and is denoted by V,Z.

In order to compute an expression for VZ we have to investigate
the tangential mapping Z,.

The action A: G X F — F induces a tangential mapping A of 7,(G)
into T(F) at every seF. (We recall that e is the unity of G.) Moreover, A
defines a natural homomorphism of the lie algebra ¢ into the Lie algebra
based on T(F). (Cf. Nomizu [34].) Let us look at the diagram.

9~ 'dg )
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The left-hand “triangle” is commutative. We define the mapping s" o
by requiring the commutativity of the right-hand “triangle”. Thus we have

(3" w)ps = A O .

Lunya 1. If g varies in G and p varies in P, then the induced tan-
gential mapping of A,2, is equal to
(9) (A{]f'u)* = ('\%‘*)p -t ()'A"k[p) o !I—ld!/-

Proof. We recall Proposition 3 and Implication (7). The rules of
differentiation of functions of many variables imply the equalities

(Au'%‘p)* = (L )py—1+ (/lq'?l‘p)*[p_voust = ('%‘*)1;g*1+(‘/1*)u,3r”-
In view of diagram (%) we have
-1
(A*)g,.’l'.p - )-Ay.f” o d.(]
and consequently (9) holds.

Tioreym 1. If X is a differentiable cross-section in W(B, G, ¥, 1)

and A is the corresponding function of Proposition 3, then we have
(V'[)/l = (")1‘*)1)%_ ('%'A('))u.-"’ﬁ © LIJ)
where L, is an arbilrary lifting of T, ,(B) into T',(P).

Proof. Let y be any vector tangent to B at p. Let L, be any lifting
which sends y to a vector ae7,(P). We have of course m,e = y. Then
we have to show that the following equality holds:

(10) (L0 M), = (Zy)),+ ('3(“‘:"'.3);1',;? ).

Let p, (t 2- 0, py = p) be an arc in P such that x == (dp,/dt). Let
be a horizontal lift of p, such that P, = p, = p. Thus we have
Hx = (dp/dt)],_,, and in virtue of Proposition 2, p, = p,gi ' where
(11) e tdyy = o,

1lIence we obtain

(Fy 0 H),x = (d,z‘%_l/(u)h_o == (d( Ay, L) 1) .

We apply Lemma 1. This yields

. , _ Ay
(12) (5{* @ H)[)‘B = (_=[*)1,m_*_ <(l O Yy l(it) !Lo’ Ilf>
where 4 = ),,,-y. In view of (8) and (11) we have
. -1 (i!]‘ l o o —— o)
(;' O (H) U,_.U =20 o, = (4 (’))l,’i}‘".

Thus the right-hand member of (12) assumes the form (10), g.e.d.
g
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THEOREM 2. The covariant devivative V X satisfies the following
equation:

Vo Logt = ((A)y 0 V,) &y

Proof. Let @, (and resp. ir,,—1) be the horizontal lift of ¢ to p (resp.
to pg~'). Thus we have @ = (o,),~1@. Tn view of Theorem 1 and Propo-
sition 3 we have

VyZ = Xy Tpg—1 = Xy 0 (04)y=1Tp = ((A*)u o Q"*) ),
q.e.d.

We now define a new bundle associated with P. T.et A(p, w) be the
tangential mapping induced by A (p, s)if ¢ varies in ¥ and p P is arbitrary
but fixed during the induction A(p,s) - A(p, w).

PRrOPOSITION 4. The wmap of Px\JT(F) by A is a fibre bundle

s
W =W (B, G, T(F),II) associated with P.

Proof. The group action A on F induces A, on T(F). A has the
propertics of Proposition 3, namely we have

z((’a_lfp’ (A*)aw) = Z(P, w)
and

A(p,w) # A(g,w) if p#q.
We define the canonical projection /1/1: W — B as follows:
IIA (p, w) = np.

We see that the map by 4 has all the properties of an associated fibre
bundle, q.e.d.

Theorem 2 and Proposition 4 imply at once the following theorem
(cf. [8].):
THEOREM 3. If we are given a vector field y on B, then the mapping
—. def —
Zp,= A(p, (V, %))
has the property of Proposition. 3 and consequently it defines a certain cross-
section in W.
We now look for relations between covariant differentiation and the
connections in the associated bundles. We consider the vector space T, (W)
at an arbitrary point weW. Let us put

Tw(W) = {o: & = A, (0, u), uelJ T;(F)},

To(W) = {o: 2 = A,(v,0), velJ Tp(P)}.
D
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~

PROPOSITION 5. A connection in P implies the existence of the distri-
bution

To(W) = T(W)+Ty (W)  (direct sum).

Proof. Let & be any vector «7,(W) and let 2, (f = 0) be an are
such that ® = (dz/dt)|,_,. Let (p;, 8;) be a representation of z;. Thus z
may be considered as a local cross-section of W over the arc 2. Let ggt‘lpt
be a horizontal lift of p, (see Proposition 2). Thus (ggt‘l'pt, Ag,8) 1s an equi-
valent representation of z,. If we put

v = (dog; 'Pfdt)e_o, W = (A4 8:[dt)]:-0,

then we have ® = A, (v, u) where veT,(P). Then we compute with the
aid of Lemma 1:

U = (dsy/dt) s+ {80 @, T TD.

The right-hand term is the covariant derivative of @ in the direction a.
By the linearity of A, we have

@ = A,(v,u) = A,(v,0)+4,(0, u),

which is the distribution in question. It may easily be proved that the
above distribution is unique, that it determines a splitting of 7',(W)
into the direct sum of T.,(W) and Ty (W) and that it depends differen-
tiably on the point weW.

In order to show that this distribution is a connection in the asso-
ciated bundle W it would be necessary to prove that for any curve b,
from b, to b, in B there is an integral curve w, such that (dw[dt) e Ty, (W)
and that w, starts at any given point of the fibre IT 'b, and ITw; = b;. More-
over, w, should define an isomorphism of the fibre /7-'b, to the IT-'b,,
in such a way as to show that this isomorphism depends piecewise differ-
entiably on ¢. We shall not deal with this problem and we refer the reader
to the book by Nomizu [34].

We now deal with computing the expression of the covariant differ-
cntial in coordinates. We choose a domain ¢ = B such that there exists
a system of local coordinates (£%): @ — R™ and that Pjn~' @ is a homeo-
morphic map of the Cartesian product @ xX&. Consequently, the same
holds for W|IT-!' 0. Thus the group parameters o', ..., " may be viewed
as the local coordinates in the restricted bundle Pz~ '@. Let us fix a sec-
tion # in P. Thus we have on Z|n !0 the equalities v* = o* (&, ..., &).
We see that if a point p e2|7 ' @ then it may be represented by the local
coordinates &“. Thus the mapping Z|% (see formula (H)) can be repre-
sented by N functions Q¥ (£, ..., ¢"), where Q¥ are the local coordinates
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in a convenable domain in F. Thus we may represent d2 |2 as a triple
B

of differentials

E -d£% A coordinate representation of the term Z’w,

which appears in formula (10) is somewhat more complicated. The action A
of G on F may be represented by the triple of N functions ¢¥ (2, ...
ey, 2V 0, L., 0"). We assume that the coordinate domain in G under
consideration contains the group unity e. Thus if a group element ¢ has
coordinates (group parameters) o', ..., ", and the point s¢F has coor-
dinates 0'..., 2", then the N numbers ¢X(2! ..., 2% ¢',...,9") are
the coordinates of the point A,s. We return to diagram (8). We see that
As 18 represented by N differential forms

-

(13) QF av'

where

of = (a‘PK('Ql’ ey QN?”l"'.,vr))

o’

g=¢

Now we have to find a representation of the connection form eo.
Let e,, ..., e, be a holonomic base of vectors in T,(G), e = (0/8v")],.
Thus we may put o = »'e;. Then we have for the chosen section #

0|2 = (J[Q?)ei,

Moreover, after restriction to the section #, w|# may be written as
a linear combination of the differentials d£, namely

(14) o|R = Ttdtte,

where I' (= I (#)) are the components of the connection object (cf. [26]

II, 31). If we apply formula (14) to (13), then we obtain the following
coordinate representation of 1) w:

4 riag.

We establish the holonomical bases of vectors in the domain in F in
question by putting Ix = @/02%. Thus Theorem 1 and the above consid-
erations imply directly the following proposition:

PRrROPOSITION 5. The holonomic local coordinate expression of the
covariant differential is the following:

(15) VE = (0,5 +QF ragIy.
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ITII. CONNECTION WITH THE LIE DERIVATION

We cite the definition of the natural fibre bundle according to A.
Nijenhuis. These bundles are the most important in geometrical investi-
gations.

DrFINITION 2. A fibre bundle A#°(B, (', F, ) is named a natural
bundle if:

1N, The bundle space A4 and the standard fibre F are manifolds and
the canonical projection m is differentiable;

N With every diffeomorphism f: @ — B of an open set ¢ = B into
B there is associated a differentiable mapping fy: '€ — N such thay

(a) f4 sends fibres into fibres by admissible mappings (i.e. mappings
which belong to the structural group G); if f(x) =y, then f(F,) = F,
(F, (resp. F,) denotes the fibre over x (resp. over y)), or equivalently: = o f4
=focm on a '(C);

(b) if # is an open subset of O, then we have (f1%)4 = fp |2 (U);

(e) #f idy denotes the identity map of B, then (idg).,- s equal to the
identity map of A

() if f and g are diffeomorphisms of B and f o g is meaningful, then
(fodw =frogsr;

3N, Every admissible map of any fibre F. into itself can be obtained
as the resiriction to F. of a certain f4 where f is a certain diffeomorphism
of B such that f(x) = x.

A natural bundle is at most of order v if f4-|I', 18 the identity map
whenever f is such that every differentiable are e: R' — B with ¢(0) =«
has contact of order r at x with its transform f o e.

It is casy to see that a bundle which is associated with a natural
bundle is also a natural bundle.

We shall apply the above definition to the above example of a bundle
of frames. l.et ¢ < B be a coordinate domain. Then there exists a holo-
nomic field of frames associated with every coordinate system (&%): ¢ — R",
namely ,,...,1, where i, = 0/d%". Let f be a diffcomorphism which
maps @ into a domain £ < B. We assign to every point xe2 the coor-
dinates which the point f(r) has. Let (»") be any coordinates on 2 and
let j, be the corresponding field of holonomic frames. Then we have the
relations j, = A%1, where

The partial derivatives A2 are the parameters of a linear group, which
is the structural group in a bundle of frames. Since every frame over any
point ze¢B may be extended to a holonomic field of frames, we sce that
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every frame may be sent into another by the manner described above,
which means that 3¥ is satisfied. It would be too obvious to verify in
detail that our example satisfies axiom 2% of Definition 2.

Let A2 be the parameters of a certain transformation of a fibre F,
onto itself. Let (£) be coordinates in a neighbourhood of #. We extend A”?
onto this neighbourhood in such a way that the equalities

AT 0*AD
agr  ag

hold. Then we consider the system of differential equations 9y°/0&" = *Aj
with the initial condition %"|, = £°|,. This system is solvable with respect
to (#°). Thus we obtain a new coordinate system in a neighbourhood of z.
We define a transformation f of this neighbourhood into B by mapping
a point 2 into such a point v» that we have 7|, = £°|,. Thus we have
a transformation which is required by 3N,

We return to the general case. Let X: B — .4 be a differentiable
cross-section. Let v be a vector field on B. Thus » generates a one-pa-
rameter group of motions m;: B - B, teR', such that we have

where  *4% A% — of,

(0, )z = ltimt‘l(cr(mtm) —o(w)),
—0

o being any differentiable scalar in a neighbourhood of x¢B. That group
is additive, i.e. we have m;0 m, = my +s if it makes sense. In virtue of 2N
there exists a one-parameter set of diffeomorphisms (my),: F, ->F,,,tz.
We denote (my)4 by M;. Thus M;| X maps X into a certain one-parameter
set of cross-sections in A4

DeriniTioN 3. The mapping M,|X: X — N, induced by the vector
field v, is called a dragging of X in the direction wv.

If there exists a limit lim ¢*'('w;—u) where weX and ‘w, = M,u,
t—0

then we call it the Lie derivative of X at v and we denote it by £, or by
(L, T ).

We apply this definition to a field of differential objects of the rth
class (cf. [16], [1], [46]).

The corresponding fibre bundle is 47 (B, L, RN, n) where L. is the
differential group of order » and dimension » (= dimB), RV ‘is the
standard fibre. Let Ag, .oy Ap . p, denote the parameters of the group
L. We describe the action of L}, on RY by the system on N differentiable
functions % (2',..., Q¥; A}, ..., A5 5, ...) or, more briefly, by ¢¥ (2; A).
A" 18 a natural bundle if we require that every change of local coordinates
in B, say (£°) — (£¢7) implies a transformation of the fibre QK — % (Q; A)
where
o 08 " ar &
T S e el TR VT

Vs
Dissertationes Mathematicae LVI / Bm 2
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The unity of the group L, has the coordinates A5 = 45, A5, = 0. We
write
I (0, A\
O (8185 7 (82,
(16) == Ifl L= o l a a 43 *
: N A —85 A =0
0‘ I"l...l'k B ' ifll:’-z...

If v =", is a vector field in @, then the corresponding group of
motions #uy; may be expressed in coordinates as follows:

(17) oo E Rt o (t).
Thus the corresponding element of L), has the parameters
(18) A = 0p+t(dun"), ooy Ap g =10, 0"

where we leave out the terms of order o(f) and ad,  , — AfaEn . g,
The reciprocal clement to (I18) has the parameters
a « : a *

*A/f = /;—I(l)l;’v ), ey "1;;1"'/'/.‘ = _f()ﬂl.../‘/‘-?)n
(+ terms of order o(f)). Thus the K th coordinate of the dragged object
is equal fo

! 0y g 1 N 1 - 1 [

Qt = ¢ (Qt, ceey -“-)t ) (51 —f»()l’?) PRPI —(’),';1‘__{“\.??', ...),

where QF is the Kth coordinate of the point € X over the point of the
base with coordinates (17). Simple computation yields us the result

.
L, 08 —limt ' QF —0F) = (9, Q") — Z o* m"”"*’f),-:l',.ﬁk?"‘.
t—0 h=1

We obtain in this way the well-known formula for the Lie derivative
in the classical case (cf. [49], {32], [27]). Thus we have

PROPOSITION 6. Definition 3 is consistent with the elassical one in
the case of differential objects.

If the fibre bundle in question is not a natural one but there is defined
an infinitesimal connection, then it is also possible to define a kind of
dragging. Let X be a cross-section in a fibre bundle W (B, (¢, F, =) with
a connection which was considered in the previous chapter. Let » be
a vector field in B. Thus each point re B is the origin of some are x;, = e
(see formula (17)). Let 2, be a horizontal lift of .\, in the principal bundle P.
Then we assume the following dragging: "2, = Au, 1 X1y where ¢, is from

Proposition 2 and 7;eF, ~ X. If we compare this with Definition 1,
then we obtain the following proposition [8]:

ProvosrrioN 7. The Uimit Yim ('@, —2) erists and is equal to the
covariant derivalive V7. =0

We observe that this kind of dragging, which is implied by connee-
tions, is of infinitesimal nature, while the usual one, implied by transfor-
mations, Is local.
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IV. CONNECTIONS IN THE BUNDLES OF DIFFERENTIAL OBJECTS

In this chapter we make use of the notion of jet (c¢f. [11], [25]). To
begin with we consider a set of C%regular mappings of a domain # < R"
into R™, such that a fixed point @ is mapped into b. Let » be a natural
number, » < ¢g. We assign the two mappings f and ¢ to one class if f(a)
= ¢(a) = b and all partial derivatives up to the order » of f—g are equal
to 0 at a. Such a class of mappings is named a jet of order v, a is its source
and b its target. Such a jet will be denoted by j.(f), f being its represen-
tative.

This notion may immediately be extended onto the case of differen-
tiable manifolds. Let 3/ be a manifold of the regularity class C?. If re@
< M, 0 is a coordinate domain, then there exists a reversible mapping &
of ¢ into R" (n = dim.J[). The components of & are local coordinates
in 0. Let ¢ be any mapping of ¢ into R™. Thus ¢ may be expressed by
local coordinates with the aid of h, namely there exists a mapping f of
a convenable domain of R" into R"™ such that ¢ = fo h. If we change
the coordinate system in a neighbourhood of z, i.e. if we take a mapping b’
instead of %, then we write ¢ = f o &', where f =l ofoh'"'. One may
verify that f and f determine the same jet. Thus the jets on differentiable
manifold may be defined independently of the coordinates.

We consider the jets of mappings of a neighbourhood of 0 =« R"
into ¢ = M, 0 being mapped onto r. We observe that two such mappings
determine the same holonomic frame at x if and only if they determine
the same jet of order one. This leads inmediately to the following gen-
eralization of the definition of the frame: A frame of order r and dimension
n at xeM is a jet of order r with the source 0 = R" and the target .

We take into considerations a principal fibre bundle P" = P(B, L})
where L, is a differential group of order » and dimension », B is n-dimen-
sional manifold of class C? and the canonical projection (which is not
explicitly written here) maps each frame into its origin. The points of P’
are frames of order r, which we identify with » th order jets of local mappings
R"™ — B. The structure of the group L; may be investigated by considering
jets of inversible mappings R" — R", the source and target being at 0.
If we have two such mappings f and f' and the corresponding jets jo(f)
and j;(f'), then the group product of these jets will be a jet j5(fo f).
A uanity in L, is a j(id.). The parameters A5 — which were dealt with
in the previous chapter, were the coordinates in the group Lj.

We denote the Lie algebra of L, by #,. We assume the following
vectors as constituting a base in &,

0 !
PRI R T
[ . u L
0Aq, o

e
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According to a result of V.V. Vagnér [45] the Poisson bracket in &,
is expressed by the formulae

/ [ef1--%, egl...ﬂg]

1!

_ (st 1)! el 29 P ) (srt—1)! elf1- Pl -1 pog)
(19) < st(t—1)! (s_‘l)'t'
el skl = (),

\ [elL, efr] = (ejrdlr—el o5).

Let 6 = 2 01,1 a5 €% denote the fundamental left invariant form on Lj,.

The Maurer Cartan equations may be computed from the formula
= —[6,0]= 22[@'1 “k, eg-Pr10n L A Of s

and from (19). After some simple computations we obtain

AD

Yt 1---9k)8 "

Let 9, ..., 9" constitute a system of basic forms in a certain domain

O < B. If E are basic vectors in R", then the form #™ = #°E, maps
T(0) into R". We assume that the basic forms satisfy the structure equa-
tions of K. Cartan:

a9 = 9 A9,

dds = —0y A O+ A 05,

U, = Byp.
A prolongation of these equations by G. . Laptév’s method(!) yields
a sequence of linear forms ¥ .4, ...y 93,4, Which we agsume to be

symmetric with respect to the lower indices. These forms are subject
to the following structure equations:

A0y 24 h'(k h Neyeccan N Dagypcage 9 A oy o

which may be written more briefly if we use L. E. Evtushik’s symbols [18]:

dd; = ¥, A g +9" A 0%

ay...ag {ay...0p Tyt 1. Uit aj...agv

The signs {-} denote here a symmetrization with summing with respect
to b from 1 to k.

(") The reader may consult [28] — [31], [18], [47] or the Appendix in this paper.
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The fixing of any fibre in »~!(0) consists in choosing a certain solu-
tion of the system #' = ... = #" = 0. Then if we fix a fibre, the structure
equations of the forms ¥,  become identical with the Maurer-Cartan
equations (20) of the group L,. We see that the forms 9,..., 95 .
may be assumed to be basic forms in the bundle P"|z~'@, provided that
they are not zeros and that they are linearly independent. A linear
transformations of the forms #° implies passing from one local section
to another. If the forms 9* are direct differentials of the local coordinates,
then the forms are their linear combinations [18]. In the following we
assume that such a special case does not occur. We assume that the se-
quence of the forms {¥° &,..., 0 5} constitutes a base of linear
forms in P". Thus the connection form »™ may be expressed by the for-
mula

(21) o = 15\(")_|_;{(')
where

”
(22) 00 = 3o, ek,

k=1

ry a ®,a7,..a

(23) " = Z Bj, opest k.

=1

We sghall investigate the object B. We shall derive its infinitesimal
equations from the curvature equations

(24) A, .+ [©) 0]y, ., = Ra A

a.l"-"k‘""

where R is a curvature tensor of the connection ™. The transformation
rule of R is of the type “adj” [26]. The substitution of (21), (22) and (23)
into (24) yields the following equations for B:

3 a 1] a a KT _ o ,u_ L3
(25) dBul...ukx+B{ul...allul al+1...uk}ﬂ_B{ul...uu;ml apyy...op) Bal...ak#ﬂx 0°1~--°k”

= hq 9~

Cll ..‘ak*l{

We denote the left-hand member of (25) by 4B, ... Then we state
that the system of equations

P = =9 =0,

ABZI._‘%:O (ay @yyevvyag =1,..0,n5 kb <7r)

is completely integrable. This follows from the fact that dAB = 0 if
#% = 0. Thus system (25) defines a field of geometric objects. We get
the following theorem:

THEOREM 4. Equations (22), (23) and (25) define a family of connec-
tions over a domain 0.
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Now we deduce the formulae for the covariant derivative of a con-
nection object /' in P". We make use of the following formal relations
between the infinitesimal equations of a geometric object and the cova-
riant and Lie derivatives. Let » be a vector field in the domain 0. Let »*
denote the coordinates of ©» with respect to the frames which are dunal
to 9. If a field of objects 2 is given by its infinitesimal equations

A!)A _ (lph+ )1 ()A “'1 .ag 0:1 - = QF!?V,
=
then the covariant derivative with respect to v is equal to

,
. . Dy oa ‘
A 08 = ot (QF+ N Oy L)
L--1
and the Lie derivative is

2.4 A ’ A
Qv!.)l\ o )lx ) (Jl\ .“LWZI‘-‘“I;

where 7“1 «. denote anholonomic derivatives of the field v, which are
obtained by the prolongation method (c¢f. [19]). Thus the covariant
derivative of B may be derived from the infinitesimal equations (25).

We have
Ve, Ba =" hl:l---"l."'-}— B

DR

v

j Rl

[¢3
g L g anyo© — Blay o Ly g ¥

— B3 e —1g v,

Nyl xv ay...upv
The formula just obtained is valid in an arbitrary frame. We pass con-
tinuously to holonomic coframes on the base B|0, namely 9* — d&,
Then the forms & pass into linear combinations of the differentials d&".
We can choose them all to be zeros. In such a case formula (21) takes
the form

~

o = Y

v

I8 E el

Lag

"l\.

-

where I are the coordinates of the connection object in a holonomie
frame. \We see that 7 may be treated as a boundary case of the object B.
The following theorem results from the infinitesimal equations of B and
their formal relations to the covariant and Lie derivatives.

Prorvosirion 8. The covariant and Lie derivartives of the connection
object I' o, of the order r arve erpressed by the formulue

A7} L a £3 3 v
ij ap...apq =10 a" PU]...'ll_fll +P(ul...ﬂ[!l'i Faljl_l...“k]xl' v —
a h2'3 W L Y v
{a 4--"},;1143\ I aj . _uk}vll‘ _-’ “1--"‘/.‘"1 ,w ] ..U l/wv .
1 A 7] '} b
Q., Ful"'"k/l v 0 Frxl LAt - {ﬂl...“llxl aﬂ( |.1..."k-}l’ v +

Wt k a » \a
{_ {"l“'“ll/'”' Ouli—l-'-"k]’v +rn1,,,akx0ylo +aa1_‘_akﬂ.1‘ .
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V. DEFINITION OF THE COVARIANT DERIVATIVE
IN TERMS OF FUNCTIONAL EQUATIONS

We now restriet ourselves to considering natural fibre bundles (ef.
Chapter [11). In particular, the subsequent results are valid for differen-
tial objects, and they do not depend on the results of Chapters 111 and 1V.

We have remarked above that a mapping 2 of a principal bundle P
into a standard fibre £ of an associated bundle determines a field of
geometric objects if and only if the following functional equation is
satisfied:

(26) Xyt =A,10&, where gelr.

The point p is thus a frame and the point Q == 7, is a value of an object.
In order to investigate the object by functional equations we have to
expand (26) in (local) coordinates. But we do not need any representa-
tion of the frames, because, in agreement with our assumption, a frame
is relatively determined by local coordinates of the base., Fixing a re-
presentation of a field of geometric objects consists in a choice of a field
of frames .¥ < P and in finding #,, where pe..

The associativity of the action A: ¢ X F > F 1mplies the identity
Ag-104,-1 = Apgy-1. An expansion in local coordinates in G yields the
system of funetional equations

(27) o™ @ (Q, n), w) = ¢5(Q, 0(u, w)),

where the system of functions ¢ = {¢!, ..., ¢} expresses the action A
and Q' ..., 2V denote the local coordinates in a certain domain = #, "
and »* (k=1,...,r,r = dim@) denote respectively local coordinates
of ¢ and h respectively in a certain neighbourhood of the unity ee@,
and 0(u, w) express the multiplication of the group clements. If we
have to do with classical cases, 7 being a differential group and /' being a
Euclidean space RY, then all the coordinates in question are defined
globally.

Let us notice that system (27) is defined on 7 < IF. Its solutions are
called gencral geometric objects, and if they are considered from an al-
gebraical point of view, we call them representations of the group G.

Let (&%) and (&%), « = 1,..., n, be two different maps of a certain
domain ¢ = B into RY. Simultancously the functions
L

e
are defined, because we take into consideration differentiable maps only.
Also our field of objects always have ordinary Pfaff derivatives with
respect to the local coordinates.
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We shall look for a definition of the covariant derivative of the field
of objects. It will be given in terms of functional equations. We start
with defining a connection object by giving its transformation rule. If
a connection object is defined on every local section &: B — P, then
simultaneously the corresponding connection form is defined (sce p. 15).
The relating formula is w|¥ = [Fd&e;.

We denote by j',...,j" the coordinates of the unity in G and by
*w', ..., *w" the coordinates of the group clement which is reciprocal
to w', ..., w". We introduce the following symbols:

308 . w 3
ey w) = 2L g,y = 2O
The sign  will denote that after performing the operation 8/dt* we sub-
stitute in the differentiated function ¢' =j', ..., t" =j". We put

fk(“) - Olll\cs(uy t)’ 19'l(::.l('u‘) = Blé\ls(t’ u)

Then we map G onto a matrix group by putting
d * A
5 (u) = (—th Os(u, o(t, u))) .

at is easy to prove that 7 iy a coordinatic representation of the operator
adj g~'. The following identitics may Le deduced directly from the above
definition of »7:

(28) S5() = (U, 1) Pt () = 65 (2, u) I (w),
(29) o5 () Y (w) = d‘;(()(u, w)),
(30) A3 (w) AL (w) = 65,

The parameters

Cr(u) = 0% (u, u*)0,u"
will be associated with every transformation
(& - (&,
Q >0, Q={0%) ={5(Q,u).

Suppose that an open neighbourhood ¢ < B is covered by three
local_maps (&%) 5 (69, (EE) and that every transformation (&%) — (&°) —
- (&%), (&%) — (&%) is associated with a certain group element which
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depends on a point of @. These relations may be presented on the follow-

ing diagram
. % ]
(") oy &)
/&w)
2 =0(u,w) w
“(2)
(&)

~Then #(z) may be computed by means of the following formula

(31) € (2) = € (w) +ASl¥ (wH) B (u),

where A4¢ = 655/65".
We shall prove it. We have

(32)  €%(z) = €E(0(u,w))
= }kl(e(u’ 'lU), O(W*; u*)) Gzl(u, ’LU) Oau"-}—

+67(0 (w0, w), O(w*, w*)) 6%, (u, w)d,v"

We consider the first ingredient of the right-hand member of (32). In
virtue of the associativity rule for the functions 6(«, w) we have

(33)  05i(0(u, w), 6(u*, w*)) O (u, w)

k
= Ohl (u, u*) .
{=u*

— (_O_TLF 0% (0 (w, w), 0(w*, t)))

The last member is treated similarly, namely we have

(34)  65(0(u, ), 0(w*, u*)) O (u, w) = (a—?ﬁok(e(“’ w), 6(t, u*)))

lt:w‘

0
— (E—h—o"(u, 0(0(w, 1), u)))

v

t=w*

= 7 (u*) Oy (w, w*).

The substitution of the results of formulae (33) and (34) into (32) yields
(31), q.e.d.
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Now we define the connection object " by providing it with the
following transformation rule:

T3 AL/ () (10— ().

We have to prove that this transformation rule has a group property,
in other words that the following diagram is commutative:

)

(£ >

-n.:

f'j——rfg

N

In view of formulae (29), (30) and (31) we have
/; = A:J/‘f,(u)(l’g'—‘(;;'(u))
= AL () | AT/ () (LT (0) — 67 ()]
= A.;A‘;(c/f,(u)g 2 (o) [T — (62 (e)) + dLall ()6 ' )]

= A2 () (I —%1(2),  q.e.d.

Of course the components of the object /" which appear in formula (11)
have the same transformation rule.

Now we tarn to the axiomatic definition of the covariant dervivative
of the ficld of geometric objects. We assume that a connection object
is defined in the space under consideration.

DurINIrioN 4. Let Q and Y be two geometric objects which are
subjeet to the same group (. A sequence of functions ¥ (Q,Y) where
M =1,..., N, will be called a paracomitant of the ohject £2 which depends
on Y if and only if the sequence {¥', ..., YY1 Q' ... 2} constitutes
a sequence of coordinates of some geometric object.

For example, a paracomitant of the veetor @ in a space of affine
connection is a (non-geometric) object [Ty ™.

DEFINITION 5. Suppose that we have a paracomitant {#7(Q, O, ')}
of the field of the geometric object £ and of its first Pfaff derivatives
Q = {0,0" which depends on the connection object I' and satisfies
the following axioms:

1V. 4 ds subject to the transformation rule

ag

HHQ, @,y = 1@, 0, 1) = AT ohxllQ, &, 1),
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where
' 00! gl (0, w
QL = o )

T AT
2V, If the connection object I' vanishes in a certain subset, then we
have in that subset X1(02, 2, 0) = 0,0
Then such a paracomitant will be called the covariant derivative
of the field of object £.

THEOREM 3. Definition 5 determines wnigquely a sequence of coeffi-
cients of the covariant differential of £, according to Definition 1.

Before proving the theorem we have to prove some lemmas.

LEyMA 2. The derivatives of the functions ¢ which express the trans-
formation rule of £ satisfy the following identities:

(35) PEK(Q, w) = ¢K(Q, w)pE(Q2)6% (w*, w),
(36) D) = (2, el Q) (w"),
(37) (/"5\;(97 0(t, 'w)) = ‘/‘f(ﬁy t)(#f[(!‘-)’ ),
where

7E = K|, gl = O = 0¥ 102", GF = 2F = (04" 0wy
Proof. We start from the functional identities

(27") o™ (002, 0, 00) = ¢ (2, 00, 1)

(see formula (27)). We differentiate them term by term with respect
to t and afterwards we substitute ¢ = j', ..., " = . We get
(38) 72 (2, 10)75 (2) == ¢ff (2, 1) ¥y (oe).
In order to compute the matrix reciprocal to 9, we differentiate the
evident equality

08("’*, 0(/'0, t)) . t‘.

with respect to t" and we substitute ¢ = j. We have
07 (w*, w0) Iy (w) = 4.

If we apply this result to (38), then we obtain (35).
Similarly we obtain the identity

on (2, w) = (/5(!2, w) I, (1)
by differentiating the following

7= (p(2, ), 1) = f/"‘:'(!?, 0(t, w))
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with respect to t* and then substituting ¢ = j. The substitution of the
right-hand member of (35) for ¢ yields

TR (Q) = oK (2, w)PE(Q)0% (w*, w) & (w).

The last formula together with the identities
. 0 A
0% (w*, w) &}, (w) = [E"ﬁ 07 (w*, 0(¢, w*))] = % (w)
implies (36).
Finally (37) will be obtained by differentiating (27’) with respect
to Q7.
LEMMA 3. The object Q' = {0, Q%Y is subject to the following transfor-
mation rule:
6,05 — A7 QF [0, Q"+ ()63 (w)).
Proof. In virtue of the identities of Lemma 1 we have
9. QK — AT0.¢8(Q, w)
— AT(QF0, QP ¢ (Q, w) 3, ")
= AT QK0 Q8 4 GF (2)05, (0¥, 10)0,0"]
— AT QK [0, QF 4 oF(2) 6 (w)],

q.e.d.
LuMMA 4. The object

A

PE = 0,25 495 (T,
18 subject to the following transformation rule:

9K — ATk 9",

a

(This lemma may easily be deduced from Theorem 2, but we want to
obtain it independently by means of functional equations.)

Proof. In view of formulae (30), (35) and (36) we compute
0, Q5 +gf (DI = 47 QF [0, 2" 495 (€2 (w)]+
+ QEGE(Q) 75 (w*) /5 (w) AL T2 — 67 (10)]
= A 0Q010. Q2% +os () I7],
g.e.d.

Proof of Theorem 5. We have to show that the unique system
of functions which satisfies Axioms 1V and 2V is the following:

%E(Q) 9’7 Iy = aa-QK‘i‘QBs (-Q)F:-
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Axiom 1Y implies the following system of functional equations:
(39) AE(Q, QI = ATQEAH(Q, &, I).

We treat the variables d,w" as independent. We observe that the system
of variables {w',..., %", 0,%',...,0,%° ...} is equivalent to the system
{w ..., w,%,...,6,...}. We differentiate system (39) with respect to
any %2 and then we substitute o' =3, ...,2" =7, Cl =...=0C%...
= ¢, = 0 and Ag = 0. We obtain the following system of equations:
axE(Q, 2, )

Ll 1) =
a(9, 1) Palf2)

which implies that & is of the form
Ao (2,2, =H5(Q,2)

where 2% = 0, Q% +oX(Q) .
We substitute I't = ... = Iy = ... = 0. Thus Axiom 2V implies the
equality

#E(Q, Q) =0, 0%
It follows that s is of the form
HE(R, D) = D5 +h5(Q, D),

where h has the same transformation rule as # and, moreover, h vanishes
if the connection object does. Then h is always zero and we have the
unique solution

#KQ, N =0, +¢KQ) s,

which is consistent with Proposition b.

APPENDIX
OUTLINE OF THE THEORY OF PROLONGATIONS

We give a short outline of the theory which was initiated by E. Car-
tan and further developed in Moscow. This theory has various applica-
tions to the investigation of imbedded manifolds, connections, etc. On
the other hand, it is related to the theory of prolongations expounded
in [11]. For the sake of brevity we omit here some details, proofs and
extensions, which are to be found in the cited papers of G. F. Laptév
and his pupils.
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1. Invariance equations of geometric object. Let F Dbe an N-di-
mensional manifold. Let ¢ be a Lie group which acts on F on the right.
We denote by ', ..., w" the coordinates of a group element in a certain
domain < ¢ which contains the unity e. The vectors e; = ( ﬁ/’(’)w’ ). form
a base of a Lie algebra @ of (. The fundamental left invariant form
@ = ¢ 'dg may be represented as @ = @'e; and depend on w and duw.

We take into considerations a point ¢ /. An element g e transforms
£ into a point O, ie. Q = 1,0Q. In virtue of the associativity of this
action we may write simply Q = ¢- Q. If we differentiate formally this

ecquation, then we obtain
dg-Q-+g-dQ2 =0

and lhence

(40) dQ-+(g 'dg)- Q = 0.

It is an intrinsic forin of the invariance equations. In order to obtain an
explicit form in coordinates we have to introduce the transformation

functions {¢™), QF = ¢%(Q, ), which express 4 in terms of local eoor-
dinates. Then equation (40) may be written as a system of equations

(10") dQF 4 QF &' (o, dw) = 0
where the functions Q may be defined by the formula

OF _ A (2, w0)\i
A dw" o l,,—f‘

Conversely, if we have a system of forms which constitute the left-hand
member of (40°), then we may ask under what conditions it is completely
integrable. We compute the external differential of the left-hand member
of (40’). We have

J !2,',"

()!2”1 (IQ’I A d)" _}‘ !}(I,\' (l(bu = 0.

(1)
If we make use of equations (41) and of the Maurer-Cartan equations
AP" = 105, " A 7,
where Cf; are structure constants of the group &, we put (41) in the form

1[008 . 00F
PR R T L

- 1 -,
vg(f) DA B — o QP AP = 0.
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We observe that the expression obtained does not contain any differen-
tial dQ%. The condition of Frobenius gives us a necessary and a suffi-
cient condition for the complete integrability of system (10), namely

09y & 02

[} —_— e e e
(42) FYo . ¥ 12

Qb — i, OF .
Conversely, if we are given a system of equations
(43) dOF - EF (YD (e, dr) = 0

on G x F, then it is completely integrable if and only if equalities (12)
hold after the substitution of £ for ©F. In such a case it can be proved
that the prime integrals of (43) satisfy the identity (associativity law)

PE(P(R, w), w') = PF(Q, 0(w, w'));

6 expresses here a multiplication of group elements in a chosen coordinate
domain in G. We conclude that ¥ expresses a certain representation of
the group ¢ on the manifold F.

If we have an automorphism « of F and ¢ = {¢™} defines a repre-
sentation of @ on F, then a sequence of mappings {p"} = {a ‘er(aQ, )}
defines an equivalent representation. We have the following system of

linear relations among the representations ¢ and ¢: ¢X — MEgX where M
is a non-singular matrix. The corresponding systems of infinitesimal
equations are also linearly equivalent. We see that a system of equations
of the form (43) determines a class of equivalent geometric objects, pro-

vided that it is completely integrable.

2. Bases of linear forms and structure equations of fibre bundles.
Let P(B, G, x) be a differentiable principal fibre bundle over a base B.
B may Dbe covered with a system of coordinate domains @,. On every
0, there exist n (= dim B) fields of linear forms &, ..., & which are linearly
independent. Moreover, @, may be chosen in such a way that every sub-
bundle is locally trivial, i.e. P|x~'0, is a diffeomorphic map of G X 0,.
Thus we can choose a basic system of linear forms 9%, ..., 97, 7., ..., 7.
(r = dim@) in every bundle P [z~ ' 0,. Since subsequently we shall restrict
ourselves to considerations of one such subbundle, we shall usually leave

out: the indices ». We choose our basic forms in such a way that they
satisfy the following cquations: ‘

(44) di® = 9, A 9",
(45) Ay = 3Chan" At i,

-

The coefficients Of, are the structure constants of (. The existence of
the forms &, follows from a theorem of Frobenious, because the forms §°
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are expressible by local coordinates and their differentials. The existence
of the forms #* and 5* which satisfy (45) follows from the existence of
trivial (flat) connections in P|x~'0,. It may be verified that the form
of equations (45) is invariant under the following transformations:

n—n =(adjg " )yn+g 'dg,

where n = 7/ e; and ¢ is an arbitrary element of @, or under a transfor-
mation
n—>n" =n+te,
where o = ;9 e, and y, satisfies a system of equations of the form
dyy +yn 0%+ Chayu® = yiud?,
vy being a certain new object.

Conversely, suppose that we have a manifold 3/ with a projection
n: M — B. Suppose that the manifold B is coverd by the system of
domains @, such that in every 0, there are defined fields of basic forms
9 and ", such that equations (44), (45) are satisfied, C§; being structural
constants of a certain group G. Then there exists a system of diffeomor-
phisms h,: G X 0, - a0, such that we have »? = h¥®°,»_, where the
form @ = ®”e, is the left-invariant form on ¢ and h} denotes a mapping
induced by #,. The invariancy of equations (45) under transformation (46)
implies that the diffeomorphisms k, have the following property: If
k;' o h; is defined at a certain point over @, ~ @, then h;' o h;eG. This
property allows us to provide M with a structure of a fibre bundle, pro-
vided that the projection z is not trivial. Therefore equations (44), (45)
are called the structure equations of a principal fibre bundle.

We turn to an associated fibre bundle W(P, B, G, F, IT). Each of
its points has a representation in P X F, namely a pair (p, £2) (i.e. a frame,
value of the object). All other representations of the same point are of
the form (p-g~%, 4, 2), where g varies over G. We may speak also of
a representations of a subbundle W|x~' 0. We fix a section & < P|a~'¢
and we consider the points of & X F. The set of these points is a repre-
sentation of J/T-'0. The representation being fixed, we choose a base of
linear forms 9%, ..., 9% ¢, ..., Y, where

K= aQF 1+ 0%

and Q were defined above. We observe that if we fix a fibre by putting
9 =...=9" =0, then the forms »* are equal to the components of
the map by h* of the left-hand invariant form on &. Thus ¢, ..., ¢V are
maps of the left-hand member of the invariance equations.

In the geometrical applications we always use definite fields of
geometric objects. Thus it is essential to define the sections in bundles
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of frames and in their associate bundles. A local section in P is an in-
tegral of the system

(46) 7" = A9

and a local section in W, if a representation is fixed, is an integral of
the system

(47) A+ 0K 2 = oKy,

A% and QF are some new objects.

3. Prolongations. The following lemmma plays an essential role in
all the following constructions.

LEMMA OF CARTAN-LAPTEV. Suppose that we have a system of exter-
nal p-forms ¥,,v =1,...,n, and « system of n linear forms o'. If the
identity ¥,0" = 0 holds, then there erists a system of forms =, such that
we have

S — = 1
Y, =Z2,A d",

2, being of degree p—1 and beiny symmelric.

The proof of this lemma does not essentially differ from the proof
of Cartan’s classical lemma for lincar forms.

Now we shall prolong equations (44), (45). We differentiate exter-
nally (45) and, introducing simple reduction and using (11), we obtain
the following equations:

(A —aqr A O —Cramb AT A & = 0.

In view of the above lemma we sce that there exists a new system of
forms #,, such that

(48) diy = 1, A I LN N

If we fix a fibre by putting 9' = ... = ¢ = 0, then equations (48) become
the Maurer-Cartan cquations of a certain Lie group &, which contains @
as a subgroup. Then the forms &, 9% 5, altogether constitute the fun-
damental system of forms of a certain principal fibre bundle P(B, ¢, n),
which includes the original bundle P. We have to note that if P(B, G, )
and P’ (B, @', 7) are two bundles obtained by the described prolongation
of P(B, @, m), then P and P’ are isomorphic. Although the Cartan-Laptév
Lemma does not ensure the uniqueness of the forms 4. Two such systems
of forms can differ only in a linear combination of the basic forms 9.
We have seen that two such systems define isomorphic groups.

Dissertaliones Mathematicae LVI 3



34 Covariant differentiation of geometric objects

An important special case is a linear one. The corresponding group
is a multiplicative group of # X # matrices. We denote it by L. The struc-
ture equations in this case have the form

4 = 0, A 0",

(49)
a0y = —0" A K404 A .

The first prolongation gives us the forms #4,,, which appear in the equa-
tions

Ay, = — 0% A 05,4+ 04 A 9S—0% A DS+ D%, A O,

Together with (49) they define a group L2 and a corresponding bundle
PYB, L, ) (sec p. 19).

We can repcat this process step by step. The result of this prolon-
gation is a sequence of forms which determine the structure of the prolon-
ged bundles P" = P(B, L;). (Here we do not write the canonical projec-
tions P — B.) The prolonged groups are isomorphic with differential
groups of order r and dimension n.

We shall now explain the prolongation of associated structures.
We turn to equations (47) of a field of geometric objects. We differentiate
both members and we make use of formulae (42), (44), (45). We obtain

QK2 A9 = dQF A 0"+ Q591 A 0.

I

By using the Cartan-Laptév Lemma we obtain the system
(50) L AQF L g 0F ) = 089

where Q% are some new functions. This system is completely integrable
and it defines a field of a certain prolonged object { 2%, X}, Repeating this
process we obtain a sequence of prolonged objects {QF, QK. ., Qﬁ__.,,m}.
Such a process of prolongation may yield zeros at a certain step or
may be continued to infinity. The prolonged components .Qﬁ‘;.__as always
constitute a paracomitant of the exit O (in the sense of Defini-
tion 4). It may be shown by examining the corresponding invariance
equations that the objects {Q%, 2%} and {Q%, 9, 2%}, which contain the
first Pfaff derivatives of 2, are equivalent. The prolonged equations (50)
together with the exit equation (47) define a section in a prolonged bundle,
which is associated with those obtained by prolongations of the exit
principal bundle. It should be noted that the Cartan-Laptév Lemma
does not ensure the uniqueness of the prolongation of the structure equa-
tions. If 7, and 7, are two systems of linear forms which are obtained
by a prolongation method and both satisfy (48), then there holds a rela-
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tion »y —uy = py, 9 where the coefficients pj, are symmetric. But if
we once fix a certain prolongation of the principal bundle, then the pro-
longation of a field of objects in an associated bundle is uniquely deter-
mined.

Remark. In the above outline we have not dealt with the sub-
groups of L, or with the so-called resistant elements. This notion is an
extension of the line elements of Cartan. The theory of the related con-
nections has been trcated by N. Takizawa [44].

For the general theory we refer the reader to the cited papers of
G. F. Laptév, P.I. Shvéykin, A.M. Vasilyev, V. Bliznikas and L. E.
Evtushik.
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