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HAMILTONIAN CYCLES IN SKIRTED TREES

Abstract. A skirted tree can be obtained from a Halin graph by subdividing some of its
interior edges. We characterize Hamiltonian skirted trees and those trees which can be interior
trees of Hamiltonian skirted trees. Both characterizations are algorithmic and provide polyno-
mial-time recognition algorithms for Hamiltonian skirted trees.

1. Introduction. A Halin graph H is a plane graph with
V(H)=V(T) and E(H)=E(T)VE(C),

Where T is a plane tree with no vertices of degree 2, C is the cycle
{vy, v,, ..., v, v,) and vy, v, ..., v, are all leaves of T in a cyclic order. We
write H = TuC or H(T) and call T an interior tree of H. If H is a Halin
graph, then its interior plane tree is denoted by T(H). Let # denote the
family of all Halin graphs. Note that every wheel W is a Halin graph and in
this case T(W) is a star. Let He # and T = T(H) have at least two
honleaves. We define two types of subgraphs in H. Let v be a nonleaf of T
Which is adjacent to only one other nonleaf of T. Let C(v) denote the set of
leaves of T adjacent to v, and C’(v) denote the set C(v) augmented with the
two leaves of T adjacent along C to C(v). A fan F(v) with the centre v is the
Subgraph of H induced by {v} UC(v), and an extended fan F’(v) is the
Subgraph of H induced by {v} U C’(v). It is evident that every Halin graph
Which is not a wheel contains at least two fans. Fig. 1 (a) shows a Halin
graph with 3 fans.

(a) (b) (c)
Fig. 1
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If e = {u, v} is an edge in a graph G, then an edge subdivision of e results
in replacing e in G by a series of edges. Let # denote the family of all graphs
which can be obtained from Halin graphs by subdividing some of their
edges. A graph G in % is called a homeomorph of a Halin graph, and T(G)
denotes the interior plane tree of G. For every Ge .# there exists a unique
Halin graph H°(G) which can be obtained from G by contracting each series
of edges to an edge. A subgraph R of G is a(n) (extended) fan in G if the
subgraph corresponding to R in H°(G) is a(n) (extended) fan.

A skirted tree is a homeomorph S of a Halin graph in which no exterior
vertex has degree 2. Thus, S can be constructed from a plane tree T similarly
as a Halin graph except that we allow T to have vertices of degree 2. We
denote such a graph by S(T). Let ¥ denote the family of all skirted trees.
Figs. 1 (b) and 1 (c) show two homeomorphs of the Halin graph H (Fig. 1
(a)), only the former of which is a skirted tree.

The purpose of this paper is to characterize Hamiltonian skirted trees.
This goal is achieved in Section 2 where we characterize all Hamiltonian
graphs in %. In Section 3, we characterize those trees which are interior trees
of Hamiltonian skirted trees. Both characterizations are algorithmic and
provide polynomial-time recognition algorithms of Hamiltonian skirted trees.

2. Hamiltonian skirted trees. It is easy to show that every Halin graph is
Hamiltonian (see [1]). To this end, let F(v) be a fan in a Halin graph H
different from a wheel and let H, denote the graph obtained from H by
shrinking F (v) to one vertex. That is, the vertices of H, are all vertices of H
not in F(v), together with the new vertex v corresponding to F(v); the edges
are all edges of H which do not belong to F(v); the vertices incident with 2
given edge are the same as in G, unless one was in F(v) in which case that
end of the edge becomes now . Fig. 2 illustrates this operation. It is easily
seen that H, is also a Halin graph for every fan F(v) of H.

<1

Fig. 2

Moreover, this reduction of a Halin graph preserves the existence of 2
Hamiltonian cycle. That is, every Hamiltonian cycle in H generates 2
Hamiltonian cycle in H, and, conversely, a Hamiltonian cycle of H, can be
extended to a Hamiltonian cycle in H. Therefore, we can again apply the
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reduction process to H, and to one of its fans. Continuing, we finally reach a
Wheel. Since every wheel is Hamiltonian, every Halin graph is Hamiltonian.

Our aim now is to define a similar reduction procedure for skirted trees.
Let G be a homeomorph of a Halin graph H. We allow also exterior edges of
H to be subdivided in G, since such graphs G may occur in the process of
verifying whether a skirted tree is Hamiltonian. For the sake of simplicity, no
two vertices of degree 2 are adjacent in G. If G or its reduced copy contains a
series p of more than two edges, then, without loss of generality, we may
Contract p to a series of length 2.

We first determine, in terms of forbidden patterns of subdivided edges,
Which homeomorphs of wheels are Hamiltonian.

LEMMA 1. A homeomorph G of a wheel is Hamiltonian if and only if G
Contains:
(1) no two consecutive interior edges which are subdivided,
(i) no three subdivided edges incident with a vertex,
(i) no three subdivided edges which are mutually adjacent.

Proof. The lemma follows from the form of a Hamiltonian cycle & in a
Wheel: h contains all exterior edges except one and two interior edges which
are adjacent to the exterior edge which is missed in h.

It is easy to see that (i)(iii) are also forbidden patterns of subdivided
edges for an extended fan in Ge # to be reducible with a preserved
Hamiltonian cycle. First note that if an extended fan F’'(v) in G contains one
of the patterns (i)iii), then G is not Hamiltonian. On the other hand, if G
as an extended fan F’(v) which contains no patterns (i}iii), then G, by
Shrlnkmg the fan F(v), can be reduced to a graph G, such that G, ¥ and,
Moreover, G is Hamiltonian if and only if G, is Hamiltonian. Basic reduc-
tions of F (v) are shown in Fig. 3 (a){e). For instance, the reduction
illustrated in Fig. 3 (b) means that if the exterior rib of F(v) is subdivided
and G is Hamiltonian, then every Hamiltonian cycle in G must contain edge
W, w}. Hence, if G is reduced to G, by shrinking F(v) and every Hamilto-
Dian cycle in G, is to generate a Hamiltonian cycle in G, then every
Hamiitonian cycle in G, must contain edge {7, w}. This requirement for G, is
et by subdividing {7, w}. The reduction of fans whose extensions contain
Other feasible patterns of subdivided edges can be defined by combining the
feduction rules defined in Fig. 3 (a)«(e). For instance, see Fig. 4.

We warn the reader that.before a fan F(v) of G is reduced, it is
DNecessary to test that its extended fan F’(v) contains no pattern (i)(iii) of
Subdivided edges. Otherwise, the extended fan of Fig. 4 with the edge
iicl, X,} subdivided additionally could be reduced by applying the same

€ps.
~ We conclude this section with the theorem which summarizes the
discussion above.
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THEOREM 1. Let G be a homeomorph of a Halin graph and F'(v) be an
extended fan in G. Then G is Hamiltonian if and only if F'(v) contains no
patterns of subdivided edges (i)iii) (listed in Lemma 1) and the reduced graph
G, obtained from G by applying the rules of Fig. 3 (a)(e) is Hamiltonian.

Proof. It is evident that if an extended fan F'(v) of G contains one of
the patterns (i)iii), then G is not Hamiltonian. Otherwise, every pattern of
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Subdivided edges in F(v) can be partitioned into a number of elementary
Cases listed in Fig. 3 (a)(e), where it is shown also how these elementary
Patterns can be reduced preserving the property that a graph is Hamiltonian.
If a particular feasible pattern of subdivided edges in F(v) has to be
Partitioned into elementary ones, the results of elementary reductions have to
be combined into one pattern in the reduced graph G,. We illustrate such a
Process in Fig. 4. (Note that all subdivided edges in F'(v)— F(v) must be
Carried over to G,.) The graph G, is also a homeomorph of a Halin graph.
By the definition of reductions, each Hamiltonian cycle in G generates a
Hamiltonian cycle in G, and every Hamiltonian cycle in G, can be extended
to that in G. Hence, we reach the theorem conclusion.

Theorem 1 justifies one reduction step of a graph G in &#. The reduction
€an be continued until either a current graph contains one of the patterns (i}~
(ii) or jt has only one fan. In the former case G is not Hamiltonian, and in
the latter case G is Hamiltonian provided the resulting wheel has no pattern
(D).

In the next section we characterize trees which are interior trees of
Hamiltonian skirted trees.



3. Trees which can generate Hamiltonian skirted trees. There exist trees
which have no embeddings generating Hamiltonian skirted trees (see Fig. 5
(a)). Fig. 5 (b) shows however a plane tree T’ such that S(T”) is not
Hamiltonian but 7' has an embedding T” (Fig. 5 (¢)) for which S(T') is
Hamiltonian. The aim of this section is to characterize those trees which can
be embedded so that the resulting skirted trees are Hamiltonian. (Note that
such trees have necessarily at least one vertex of degree greater than 2.) To
this end, we shall utilize the correspondence between Hamiltonian cycles in
Ge ¥ and certain path partitions of T(G). Let ¥ = {C;! be the set of interior
faces (considered as cycles) in G and let C; denote the path C; —e;, where ¢; is
the exterior edge of C;. It is easy to see (we proved this correspondence for
Halin graphs in [7]) that there exists a one-to-one correspondence between
Hamiltonian cycles in G and path partitions £ of the vertices of T(G), where

P < {Ci} U l(v): v; is a leaf in T(G)}.

In other words, a Hamiltonian cycle in G partitions the vertex set V(G)
= V(T (G)) into vertex-disjoint paths whose both ends are consecutive leaves
in T(G). We assume in what follows that each leaf v forms a path (v) of
length 0.

If Tis a tree and 2 is any partition of V(T) into vertex-disjoint paths
whose both ends are leaves in T (we call such a path partition of T feasible),
then there exists an embedding T of T in the plane such that the end vertices
of paths in 2 are consecutive in T. To show this, let T be an embedding of
T and p;e £ be a path whose end vertices are not consecutive. We now form
an embedding T” of T in which the end vertices of p; are consecutive and the
relative positions of end vertices of the other paths are not altered. Thus, we
can reach an embedding T in which the end vertices of all paths p,e 2 are
consecutive.

N N
-
N

Fig. §



The problem now is to find which trees T admit feasible path partitions
2. Every edge incident with a vertex of degree 2 belongs to some path in 2,
hence no vertex is incident with more than two such edges. If ve V(T) is
incident with exactly two such edges, then each other edge incident with v
belongs to no path in & and can be removed from T. The removal of some
edges from T may result in new vertices of degree 2 and in some vertices of
degree at most 1. In the former case the reduction process can be continued
and the latter T has no feasible path partition if a vertex of degree at most 1
in the reduced graph was not a leaf in the original tree T. We shall prove
that if the reduction process does not produce new vertices of degree at most
1, then T has a feasible path partition. To be more precise, let us first
formalize the reduction process in the form of an algorithm in a Pascal-like
notation.

ALgoritiM REDUCTION. {Given a tree T different from a path. The
algorithm returns fail = true if T has no feasible path partition. Otherwise, it
returns a subgraph Tz of T which contains a feasible path partition. If
Success = true, then Ty is the feasible path partition of T}

begin
success + false; fail — false; Ty < T
for each vertex v in Ty do
if v is a leaf then [(v) < p else [(v) < n;
repeat
for each edge e in T; incident with a vertex of degree 2 do I(e) «r;
if Tz has a vertex incident with more than two r-edges
1. then fail < true
else begin
2. Tr < Tg—le = (x;, x,)e E(TR): e is not an r-edge and x,
or x, is incident with exactly
two r-edges.};
if Tx has a vertex v of degree at most 1 and I(v) =n
3. then fail « true
else if each component of T is a path
then success « true
end
until success or fail or (all edges incident with vertices of degree 2 are
labelled)
end

ProPERTY 1. Every edge of a tree T labelled r by the algorithm
REDUCTION belongs to every feasible path partition of T.
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Proof. An edge e of T is labelled r by the algorithm if e is incident with
a vertex of degree 2 either in the original tree T or in its subtree obtained by
the removal from T of those edges which do not belong to any feasible path
partition (statement 2). Hence such an edge e must be included in every
feasible path partition.

PrOPERTY 2. If the algorithm REDUCTION applied to a tree T termin-
ates with fail = true, then T has no feasible path partition.

Proof. The algorithm assings fail < true either when T has a vertex v
incident with at least three edges which must belong to every feasible path
partition of T (statement 1) or when a nonleaf v of T becomes of degree at
most 1 (statement 3). In both cases, T has no feasible path partition which
contains v.

We now show that if the algorithm terminates with fail = false, then Tg
has a feasible path partition, and hence also T has. To this end, we will
utilize the following properties of Ty which follow directly from the algorithm
description.

PropPerTIES 3. If the algorithm REDUCTION applied to a tree T
terminates with fail = false, then Ty has the following properties (degg(v)
denotes the degree of v in Tg):

(i) Each component of Ty is a tree or a path and V(Tg) = V(T).

(i) For each vertex v in Tg:

if deggr(v) <1, then l(v) =

if degg(v) =2, then v is incident with two r-edges;

if degg(v) = 3, then v is incident with at most one r-edge. )
(ili) Each r-edge of Ty is incident with at least one vertex of degree 2.

LeEMMA 2. Every graph G which has Properties 3 (i)iii) contains a feasible
path partition.

Proof. It is sufficient to prove this lemma for each connected compo-
nent of G which is not a path. Let F be a component of G. We proceed by
induction on m, the number of vertices of degree greater than 2 in F.

Let m =1 and degr(v) =d = 3 for ve V(F). Then F is either a star or a
star with a tail (see Fig. 6 (b)). Evidently, such an F has a feasible path
partition.

Let m=k, k> 2, in F and assume that every graph F’ with m(F’) <k
has a feasible path partition. F contains a vertex v such that degg(v) > 3 and
v is adjacent to exactly one vertex of degree at least 2. Let u denote a vertex
of F satisfying the following condition:

dr (v, u) = min {d (v, w): we V(F) and degg(w) > 3}.

Since F is a tree, with m > 2, such vertices u and v always exist and F is
either as in Fig. 6 (c) or as in Fig. 6 (d).
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111 the former cas€ we put
F’=F—{W1, Wi, ooy Wi 1}

F' has m—1 vertices of degree at least 3 and has Properties 3 (i)}iii). By the
inductive assumption, F’ contains a feasible path partition &'. If v forms a
Path &, then

—{®)} U {(wy, v, wa)} U O )}

18 a feasible path partition of F. If v is an end vertex of a path p in &, then
to form # we extend p to (p, w,) and add the paths (w;) for j =2, ..., d—1.
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In the latter case, we put
F=F—(Wui{wg, ...,Wi_1, Witq, ..o, Way)),

where W is the set of vertices of the path from x to w;. Similarly as above, F’
satisfies the inductive assumptions, so it has a feasible path partition which
can be easily extended to that of F.

We can now summarize:

THEOREM 2. A tree T different from a path has a feasible path partition if
and only if the algorithm REDUCTION applied to T terminates with fail
= false.

- Proof. By Property 2, if the algorithm terminates with fail = true, then
T has no feasible path partition. Conversely, if fail = false, then by Proper-
ties 3 (i)}iil) and Lemma 2, T has a feasible path partition which is also a
feasible path partition of T.

We now present an algorithm which generates a feasible path partition
in T when the algorithm REDUCTION returns fail = false.

ALGoriTHM CONSTRUCTION. {Assume that Ty is the output of the
algorithm REDUCTION which applied to a tree T returns fail = false. This
algorithm reduces further Tz to a feasible path partition of T}

begin
while T; is not a collection of paths do
begin
x « a leaf in a component of Ty which is not a path;
1. y < a vertex of degree greater than 2 closest to x;
f « the last edge on the path from x to y;
2. if f={x,y} then I(f) «r;
let ey, e,, ..., & (k> 2) be the edges incident with y and ¢; # f;
3. if noe (i=1,2,...,k) is an r-edge then [(e,) «r;
while T; has a vertex incident with two r-edges do

begin .
4. Tr « Tr—le = {x;, x,}€ E(TR): e is not an r-edge and x, or x, is
incident with exactly two r-edges};
5. for each edge e in Ty incident with a vertex of degree 2 do I(e) « 7
end
end
end

The behaviour of the algorithm CONSTRUCTION is summarized in
the following theorem:
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THEOREM 3. Let T be a tree different from a path. If the algorithm
REDUCTION applied to T returns fails = false and the subgraph Ty of T,
then the algorithm CONSTRUCTION produces a feasible path partition of T.

Proof Let 2 denote the subgraph Ty of T produced by the algorithm
CONSTRUCTION. It is clear that 2 is a collection of paths of the tree T
(We remind the reader that a single vertex is also a path). To complete the
proof it remains to show that both end vertices of each path in & are leaves
in T Let us assume that 2 contains a path p with at least one end vertex
which is a nonleaf in T. Let us put

p :(u, vl’ 02’ LERE} Uk, W)

and let I (u) = n. Since in the input T to the algorithm (equivalently, in Ty
produced by the algorithm REDUCTION) every vertex v of degree at most 1
is a leaf of T, we have degg(u) > 2.

If degg(u) =2, then both edges incident with u are r-edges in T; and
none of them is removed from Ty by the algorithm CONSTRUCTION, a
Contradiction.

Let degg(u) = 3. Note first that the algorithm labels with r at most two
edges incident with each vertex (statements 2, 3, and 5), hence no r-edge is
removed from T (statement 4). If u is a vertex y for some vertex x (statement
1), then it becomes of degree 2 and both edges incident with u, which remain,
are r-edges, so they are not removed in next steps. If u is adjacent to such a
vertex y, then its degree is decremented by 1. Therefore, if finally u becomes
of degree 2, then both edges incident with u, which remain, become r-edges
(statement 5), so they are not removed in the next steps. Thus, we also arrive
at a contradiction.

4. Conclusions. We were able to characterize Hamiltonian skirted trees,
Which generalize Halin graphs, and to characterize those trees which have an
embedding in the plane so that the resulting skirted trees are Hamiltonian.
Both characterizations are algorithmic in a sense that we presented efficient
(ie, working in polynomial time) methods for recognizing these graphs. It
I'tmains however to settle if there exist structured characterizations, e.g., in
terms of forbidden subgraphs.

It is easy to see that some of the results proved for Halin graphs can be
¢xtended to Hamiltonian skirted trees. For instance, the travelling salesman
Problem (TSP) has a polynomial-time algorithm for Halin graphs (see [2])
and a similar approach can be used to solve the TSP on skirted trees. A
Special version of the set-partitioning problem resulting from the Hamilto-
Nian cycle problem on Halin graphs can be also easily generalized to that
Which corresponds to the Hamiltonian cycle problem on skirted trees; see
[3] and [7] for details. All Halin graphs are almost pancyclic (see [5]), it is
however unlikely that also many skirted trees share this property. The
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graphs which can be obtained from Halin graphs by contracting some of the
exterior edges are also Hamiltonian (see [4]). It would be interesting to
investigate which exterior contractions of skirted trees are Hamiltonian.

The vertex- and edge-coloring problems on skirted trees have linear-time
solution method (see [6]).
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