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AN EXAMPLE OF A NON-COMPACT LOCALLY COMPACT
ARCWISE CONNECTED METRIC SPACE WITH THE FIXED
POINT PROPERTY

BY

A. LELEK (STOCKHOLM)

Although most results of the theory of fixed points concern the case
of compact spaces, there is an interest in investigating the fixed point
property for spaces which are non-compact. In some cases, however,
this property seems to be incompatible with non-compactness. For instance,
the following two theorems are well-known (see [2], p. 32 and 35):

THEOREM 1. If X <8 a mormal space which contains a homeomorphic
tmage of the half-open interval as a closed subset, then there exists a null-
homotopic mapping f: X — X such that f has no fized point.

THEOREM 2. If X i8 a non-compact, locally compact, locally connected
metric space, then X does not have the fived point property.

As a consequence of Theorem 1 we obtain the following corollary:

COROLLARY. If X s a mon-compact, locally compact, normal space
with the fixed point property, then the one-point compactification of X is not
arcwise connected.

A well-known example (ibidem) of the cone over an infinite discrete
space shows that local compactness is a necessary condition in Theorem 2.
Observe that this example is arcwise connected. The question has been
raised by William Bonnice (oral communication) as to whether local
connectedness also is mecessary in Theorem 2. We answer the question
in the affirmative by constructing an example of a non-compact, locally
compact, arcwise connected metric space X with the fixed point property(?).
By the corollary, the one-point compactification ¥ = XU {p} of X is
not arcwise connected. Thus the space Y is an example of a continuum

(!) The author wishes to thank Dr. W. Bonnice for interesting discussions we
had at the Middle East Technical University, Ankara, Turkey. The subject of this
paper was also discussed with a group of topologists at the University of Stockholm,
Stockholm, Sweden.
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which is not arcwise connected, but becomes arcwise connected after
removing the point p. The latter phenomenon is not possible when arcwise
connectedness is replaced by local connectedness.

Example. Let P be the pseudo-arc and let p’, p’' ¢ P be points such
that P is an irreducible continuum between p’ and p'’. We take a sequence
Doy P1y Pey --. of different points on the plane such that p,, p,, ... converge
to p,. Let us find a sequence P,, P,, ... of topological copies of P such
that p;, p;, ,<P;, where p; and p;,, correspond to p’ and p”’, respectively,
the sets P,, P,,... converge to {p,}, but po¢P; and PN P, ;, = {p; .1},
PNnP; =0 (i,5,=1,2,...) and |[¢—j| > 1. Then C = {po}UP,UP,U...
is a chainable (2) irreducible continuum between p, and p,.

Let us denote I =[0, 1], Dy = IXI and 4, = I X {}}. It follows
(see [1], p. 654) that there exists a sequence D,, D,, ... of disks contained
in D, such that (0, §), (1, )eD;, D;,;, < D, for 1 =1, 2,... and

nDi =0’

i=0  top
where (0, ) and (1, }) correspond to p, and p,, respectively. By a slight
modification of D;, we can also guarantee that some segments of the
boundary of D, having the centers at (0, 4) and (1, 4) are contained in D;
for<=1,2,... Let A; = D, be an arc joining (0, ) and (1, ) such that 4;
has only its end points on the boundary of D,. Observe that D, is a (closed)
neighbourhood of A4; in D, for ¢ = 0,1,... We denote

'E’l: == 'D’i X [O, 2_i], 'F'L = Do X [2_i—i’ 2_i] and G‘l: = EiﬁFi

for + =0,1,...
Thus E,, E,, ... are 3-cells such that

E,,,cE, and K=E,=ND;x{0}=C for ¢=0,1,...
i=0 i=0 top
There exists a homeomorphism ¢; of D; onto itself such that g;(4,)
= A;,, and g, is the identity on the boundary of D; (see [3], p. 535).
The set G, is also a 3-cell, and we define a homeomorphism g; of the boun-
dary of @, onto itself by setting

g;(‘v’ 2_i_1) = (g,-(m), 2_1:_1) for zeD;
and taking g; the identity on the set bd@,\(D;x {27*"'}). Let h; be
a homeomorphism of G; onto itself such that k; is an extension of g;.
Then the mapping h;: E; — E, defined by the formula

B (9:(=), 1) for 0 <<E<< 27470,

hy(@,t) = . .
v hi(w,t) for 271t <270
(3) The class of chainable continua coincides with that of arc-like curves, i. e.
those which can be mapped onto arcs by means of mappings with arbitrarily small

diameters of point-inverses. Sometimes, chainable continua are also called ‘snake-
like”.
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is a homeomorphism of E; onto itself such that h; is an extension of h;.
Moreover, h; is the identity on the set H; = bd E;\(D; X {0}) for ¢ = 0, 1,...
and we have

By y.ooho(AgX[2774277]) =4, x[27,27%] fori=1,2,...

Clearly, the frontier of @; in F, is contained in H, and k;|G; = I;|G;
is a homeomorphism. Since D; is a neighbourhood of A; in D,, it follows
that G, is a neighbourhood of

hi o ho(AgXx [2757Y,27°]) = hy(4; x [27571, 277))

in F,, for ¢ = 0,1,... But A4,x[277,27"] = Ix {}}x[27}27%], and
thus there exist numbers a;, b;e I such that a; < 3 < b; and

Byo..ho(IX[a;,b,]x[277 2 )@ for i =0,1,...

The points ¢; = (3, 27%) and ¢;,, = (}, 27*"?) lie on the boundary of the
rectangle [a;, b;] X [27*"%, 27%] in which we can find a topological copy Q;
of the pseudo-arc P such that ¢;, ¢;,,€¢Q;, where ¢; and ¢;,, correspond
to p’ and p’’, respectively. We also require that the sets @,, @,, ... converge
to {(}, 0)} and @;nQ;., = {¢q;4,} for ¢ = 0, 1, ... Then the union {(}, 0)}u
U@,v@,V ... is homeomorphic to the continuum C. We get

L = {0, 1, 0 ({0} x Uy 5 ¢

and h; ... hy is the identity on the set {0} X @;. Moreover, we obtain the
inclusions A, ... ho(I XQ,) < G; < E;, for ¢ =0,1,..., which guarantee
that the set .
Z =KUJh... ho(FxQy)
1=0

is compact and L <« Z. The set L has only the point (0, 3,0) in
common with the side DyXx {0} on which the set K is located. Thus
KnL = {0, },0)} and the sets K and L are both homeomorphic to C.
Under these homeomorphisms, the points (0, , 0), (0, 4, 0) and (1, 3, 0),
(0, 4,1) correspond to the points p, and p,, respectively. Consequen-
tly, there exists a homeomorphism h of K onto L such that %((0, }, 0))
= (0, 4, 0) and h((la 3, 0)) = (0, 4, 1).
Let us distinguish yet another copy of C. It is the set

M = {(1, }, 0)}u ({1} XQ,QJ

and h;...h, is the identity on {1}X¢@,, whence M <« Z and KnM
= {(1, %, 0)}, LnM =@.

The segment N = I X {3} X {1} is contained in H, and, therefore,
ho is the identity on N. It follows that N < Z, KNN =0, LNN =
= {(0, %, 1)} and MﬁN = {(1, %, 1)}
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Now, let R denote the equivalence relation in Z such that the
equivalence classes under R are 1° the one-point sets {2} for z = (0, 4, 0)
or 2d KULU MUN, 2° the two-point sets {2, h(z)} for z¢ K and (0, %, 0)
#2z # (1, 4,0), and 3° the set MUN.

We define Y = Z/R and let f: Z — Y be the quotient mapping gene-
rated by E.

Put p = f((07 %, O))7 q =f((17 % O))

By setting X = Y\ {p}, we complete the construction of our example.
It is rather apparent that the quotient space generated by R remains
metrizable. Thus Y is a compact metric space, and X is a non-compact
locally compact metric space which will be shown to be arcwise connected
and to possess the fixed point property.

Indeed, let us first notice that the mapping f is one-to-one on K.
Therefore, we can consider K as a subset of Y if we identify z with f(z)
for ze K. Next, observe that h(x) is a point of L different from (0, %, 0)
for ¢ K\{p, q}. Then we also have

h(z) = (0) (), 'v(w)) # (0, %, 1),
where (u(x), v(2)) €Qyy), and the set

J(®) = fhigy ... ho(I X {u(®)} X {v(2)})

is an arc in X with end points  and ¢, for any point x¢ K\{p, ¢}. Since
f(MUN) = {q}, the set X is the union of the arcs J(x), where ¢ K and
p #x #* q. It follows that X is arcwise connected. Furthermore, since
h is one-to-one, the common part of two different arcs J(x,) and J(x,)
consists of the only point g. Then J (x,)UdJ (z,) is an arc again. If we prove
that subares of such arcs are the only possible arcs in X, this will imply
that the union of any increasing sequence of arcs in X is contained in
an arc. It is known that the latter property implies the fixed point pro-
perty (see [5], p. 493). Thus what remains to be done is the following
lemma:

LeMMA. Each arc contained in X is contained in the union of two arcs
from the collection {J(x): < K\{p, q}}.

Proof. Suppose on the contrary that there exists a bad arc B < X
which is not contained in the union of any two ares from this collection.
Then there exist three different points x,, z,, ;¢ K\{p, ¢} such that
Bn(J(z;)\{q}) # O for j = 0,1, 2. Let b;eB be points such that b;eJ ()
and b; #¢q(j =0,1,2). The point ¢ may cut the arc B between only
two, if any, pairs of the points by, b, and b,. Without loss of generality,
we can assume that ¢ does not cut B between b, and b,. Consequently,
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there exists an arc A <« B\{q} = Y\{q} such that b,eA and b,eA. Since
Xy # %,, We have h(x,) #* h(ml) Moreover, h(x,) is a point of L such
that (0, 3, 0) # h(w,) # (0, 4,1) and, by the definition of L, the set
{0} X (@xVQryy) is & (closed) neighbourhood of &(z,) in L provided k is
a suitable integer being either ¢ (x,) or ¢(z,) — 1. Let us find a closed subset
W < @, V@;,, such that {0} X W is a neighbourhood of k(x,) in L which
contains neither h(x,) nor (0, 4, 1). Then the set

F =fh ... ho(IX(QnW)) U fhypy oov ho(I X (@10 W)

contains the point b,, and F does not contain the point b,. It follows
that ANF is a proper closed subset of the arc 4, and the component
T of AnF which contains b, must intersect the closure of ANF (see [3],
p- 172). Let y, be a point of T such that y, belongs to the closure of A\F;
thus y, # q and y, belongs to the frontier of ¥ in Y.

Since h; are homeomorphisms, we can treat the set F' as being the
image of I X W under f. Moreover, the action of f on I x W is restricted
only to the set {1} x W which is transformed into the point ¢. In other
words, F' is homeomorphic to the cone over W and ¢ is the vertex of the
cone. Let n denote the projection of the set F'\{q} from the vertex ¢
onto the base {0} X W of the cone. We have

Tc AnF c F\{q}

and the set n(7T) contains the points x(b,) and z(y,). Finally, since {0} x W
is a neighbourhood of h(x,) in L, the cone F is a neighbourhood of y
in Y for any point yedJ(z,)\{q}. We conclude that y, does not belong
to J (z,). On the other hand, b, belongs to J (z,)\ {¢} which means that

7w (be) = J (@) \{q},

whence 7 (b,) # 7 (Y,), and n(T) is non-degenerate. Being the continuous
image of the arc T, the set n(T) < {0} x W must therefore contain an
arc. As a result, we get an arc in W < @,VQ,,,, where @, and @,,, are
topological copies of the pseudo-arc which contains no are. This is a con-
tradiction and the lemma is proved.

Remark. The example as constructed above .is 2-dimensional.
However, utilizing the method which has been developed in [4], we could
alter the construction so that the new modified continuum Y be 1-dimen-
sional, and therefore embedable in the Euclidean 3-space. One can guess
that no such continuum exists on the plane (P 765).
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