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This note is meant as an exposition of and advertisement for the topological approach to
monotone twist mappings of the annulus. We give a topological proof of a theorem due to
John Mather stating the existence of many orbits with different qualitative behaviors in area
preserving monotone twist mappings of the annulus without invariant circles. Since our
techniques are topological we can weaken the area preservation hypothesis.

(1) Introduction. This note is meant as an advertisement for the topolog-
ical approach to monotone twist mappings of an annulus. We give a simple
topological proof of a theorem which follows from a theorem of Mather
[M1] which says that there exist orbits which “shadow” certain periodic
orbits of area preserving monotone twist maps of the annulus without
invariant circles. Mather uses variational techniques. Our arguments give
only some index information about the orbits, but they allow a weakening of
the area preservation condition. The techniques we use are similar to those
in Boyland-Hall [BH].

(2) Notation. We let A'= R x{[0, 1] denote the strip and we consider
monotone twist mappings f: A — A, i.e, mappings which satisfy

(1) f is a difffomorphism preserving orientation and boundary compo-

nents,
(2) for all (x, y)eA, f(x+1,y) = f(x, y)+(, 0), ie., f is the lift of a
diffeomorphism of an annulus,

3) ?(nl (N dy >0,

where n; and n, are the projections of A onto R onto the x and y
coordinates respectively.
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126 A TOPOLOGICAL VERSION OF A THEOREM OF MATHER

For such a map we let, for z€A,
extended orbit(z) =eo(z) = |f'(2)+(j, 0): i, j€Z)}.

We say that two points w,, w, €eo(z) are adjacent if n,(w,) < m,(w,) and
w: my(wy) <y (W) <7y (wy)) Neo(z) = D.
We say z€A is a p/q-periodic point if

f4@) =z+(p, 0)
and following Boyland [Bd] we say that z (or its orbit) is monotone if
for all z,, z,€e0(z), if my(z,) <m,(z;) then =, (f(zy)) <7, (f(z2))

Remark. The theorems we state will also be true with “positive tilt”
replacing “monotone twist” once the appropriate definitions have been made
for, e.g., monotone orbits (see Boyland [Bd]).

We will study maps f: A — A satisfying the following:

ConbitioN B. For every ¢ > 0 there exist z,, z, €4 with n,(z;) <¢ and
m,(z,) > 1 —¢ such that there exist n;, n, > 0 with

1 (f"(z)>1—e and m,y(f"(z) <e

i.e., Condition B states that there exists orbits starting near the lower
boundary which eventually get near the upper boundary and vice versa. This
property was shown by Birkhoff [Bf] (see also Herman [Hn]) to hold for
area preserving monotone twist maps without invariant circles, i.e., in “zones
of instability”. By variational techniques Mather, and by topological tech-
niques Le Calvez (see Le Calvez [LC]) have shown that for area preserving
monotone twist maps there are actually orbits whose a and w limit sets are
in opposite boundary components when there are no invariant circles.
Finally, if f: A = A is monotone twist, we let

0o = lim(nl(f"(x, 0))) n and o, = lim(nl (f"(x, 1)))/n

be the rotation numbers of f on the boundary components (which are
independent of the choice of x). Then we have

THeorREM A (Boyland [Bd]). If f: A - A is a monotone twist map
satisfying condition B and p/q€(o,, 0,) then f has two distinct monotone p/q
periodic orbits.

Remarks. (1) If we replace “Condition B” with “area preserving” then
this theorem is due t0 Aubry and Mather (see [Ma] for references). Boy-
land’s version of this theorem is purely topological and hence allows, for
example, periodic sinks.

(2) We could also attain points with irrational rotation number by the
usual limit arguments (see Katok [K], Boyland [Bd]).
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We can now state the main result of this note, which in the area
preserving case follows from a theorem of Mather.

THEOREM B. Let f: A > A be a monotone twist map satisfying Condi-
tion B. Suppose we are given bi-infinite sequences {n;: meZ*, i€Z),
{pi/ai: pi/qi €(0o, 01), i€Z and pi/q; # p;+1/qi+1 for all i} and {z;€A: z; is a
monotone p;/q;-periodic point of f, i€Z}. Then there exists a sequence
tk;: k;€Z", i€eZ) and a point { €A such that for each s> 0:

(*s) There exist adjacent points wgy, w, €eo(z,) with

T (fj(Wo)) <m (fJ(C)) <m (fj(Wl))

-1 s

s s—1
Y m+ Y k<j< Y m+ Y ki (for s=0 use 0<j< ng),
i i=0

i=0 i=0 i=0

and for each s <0:
(**s) There exist adjacent points wqy, w, €eo(zs) with

Ty (fj(Wo)) <m (fJ(C)) <m (fj(Wl))

for
s+1 s

(Y n+ Y Kz (3 et Y k)

i=-1 i=-1 i=-1 i=-1

(for s=—1 use —k_, 2j=2 —(n_,+k_,).

Remarks. (1) We will see in the proof that if there is an ¢ > 0 such that
pi/q; €(0o +¢€, 0, —¢) for all i then we may assume that the |k; —(4q; + 2q; . 1)l
are uniformly bounded with a constant depending only on f.

(2) If all three of the given sequences are periodic then we may choose
the point { to be periodic (see Boyland—Hall [BH]).

(3) A lemma. The proof will follow by induction on s and relies on
repeated application of the lemma of this section. This lemma includes the
essential use of the monotone twist condition.

Notation. For zeA we let
I, =\wed: ny(w) = 731(2)}7
I ={wel,: n,(w) 2 7,(2)},

I; = \wel,: my(w) < m,(2)].
For z,, z,e€A let

B, ., = WeAd: my(z;) <my (W) <my(z5)].
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We say a set C < closure (B,,.,) is a positive diagonal of B, ,, if it satisfies

(0) C is simply connected and the closure of its interior,
(1) C 0B, ,,, =1;, VI, U iz: n,(z) =0 or 1},

z2122 —

Q) C I #0, CNI, # O.

2
Similarly, C is a negative diagonal if it satisfies (0) and

(1) 0CNB,,,, sI; VI, Uiz n,(z2) =0 or 1},

2122 —

(2) 6C I # @, oCnI;, # .

1

Y

upper edge \N upper edge

N

Z2

P4l 2, Z4 ¢

lower \
lower edge edge \
positive diagonal negative diogohol

Fig. 1

~

The set dC N B, ,, will have exactly two components stretching across
B, ., (connecting I; U z: m,(2) =0} to I U iz: m,(z) = 1} for positive
diagonals) and these are called the upper and lower edges of dC (see Fig. 1).

LEMMA. Suppose f: A=A is a monotone twist map, z,,z,€A with
m (f*(z1)) <7y (f(z2), i=—1,0,1, and C S A a positive diagonal (respec-
tively negative diagonal) of B, ., Then f(C)N By, ., (respectively
7 H0O) me_l(zl)f_l(zz)) has a component C; which is a positive (respectively
negative) diagonal.

Moreover, if C has upper edge contained in f "(I;o) and lower edge
contained in f*(I,,) and 0C B, ,, < f*(I, v 1,,) for some w, and wy with
7y (Wo) <7y (wy) then we may choose C, so that its upper edge is in f** (I, )

and its lower edge is in f**1(I).

Remark. Of course, we could phrase the last sentence for f 1.

Proof of the lemma. The first part of the lemma follows immediately from
the monotone twist condition, noting that if z € () then m, (2) > 7, (f (z.))
and similar statements for f(I;,) and f ~1 (see Fig. 2).

The second statement of the lemma follows from the fact that the upper
edge of the component of f(C) N By, )5, With the largest y value must be

in the image of the upper edge of C while the lower edge of the lowest
component is in the image of the lower edge of C. The other boundary
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components which stretch across By, are images of loops, both of
whose end points are connected to I;, or to 1;'2. These loops are contained
entirely in f*(I;;,) or f*(I, ). Hence if the lower edge of a component of
f(C) "By yp is in f¥T (I ) then the upper edge of the next component

is also in f***(I,; ). Hence there is a largest component (i.e, component with
points with the largest y value) for which the upper edge is in f*** (I} ) and

the lower edge is in f "”(I;l)-we may take this as the component C, (see
Fig. 3). = :

/
D 1

rzz flz)

~JU

Z 9 f(ZZ)

/

(4) Proof of Theorem B. The proof is by induction.
We first fix wo, w, €eo(z,), adjacent and note that by n, applications of
the lemma we may find a set C, = 4 such that

W

Fig. 3
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(1) C, is a negative diagonal for B, , ,
(2) every point { eC, satisfies (*s) for s =0,

(3) f°(Cy) is a positive diagonal of Bf,,o(yo)f,,o(m) with upper edge

contained in f"°(I;O), lower edge contained in f"°(I;1) and 9 "°(Cy)

"0 _ .
I"Owo)r"Owy) <f (I;o Y le) (see Fig. 4).

Co
wot * Wy fn°(y°) ¢ ¢ F™0(wy)

£7(Co)

Fig. 4

Now, suppose we can find for ¢t > 0 subsets C, 2 C, 2 C,...C, so that
the following conditions are satisfied:

(*) (1) C, is a negative diagonal of B

wowy?

(2) each ( eC, satisfies (*s) for s=0,1,...,1¢,
t—1

(3) with J = Y m+ ) k;+2(q,+q,+1), f/(C) is a positive diagonal of

i=0 i=0
B, ., for wo, w; adjacent points of eo(z,),

(4) the upper edge of f7(C,) is in f/(I; ), the lower edge is in f’(I,)
and :
ql(cl) anowl ng(I;’-O U I;l),

i.., the points in C, satisfy Theorem B for n;, p,/q;, z; for i =0, 1, ..., t plus
the added geometrical conditions 1, 3 and 4 which prepare for the induction
step (see Fig. 5). Note that we added 2(q,+¢,+,) in condition (3) in order to
guarantee that no points of eo(z,,,) are contained in f7(C,) (the points of
eo(z,) and eo(z,.,) have different rotation numbers, hence move apart under
iteration). We will therefore add 2(q,+¢,.,) to k, below. Fix J as in 3 above.
We must find a subset of C, which is also a negative diagonal of B, ,,

which satisfies (#,.,), i.e. which satisfies conditions (1)«4) above with ¢
replaced by t+ 1. The idea is to use orbits passing from near y = 0 to near y
=1 and from near y =1 to near y = 0 to show that f/(C,) will stretch out.
under application of f~in fact we can make the upper right hand part of the
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image as close to y = 1 as we like and the lower left as close to y = 0 as we
like. Hence the image of f/(C,) will eventually contain a section which
stretches all the way across a fundamental interval of 4, and hence will have
a piece which is a positive diagonal of the strip between two adjacent points
of eo(z,+,).

Fix ¢ > 0 so that

¢ <min {n,(z): z€eo(z,) ued(zz+1)}/2

¢ <(1—max {n,(2): z€eo(z)Ueo(z+,)})2.
Also we fix m; > 0 so that

T (" @)=m (7 (W) > 147y (2)— 7y (w),

whenever n,(z) > 1—¢ and 7, (w) <e¢ (i.e, the points near y = 1 move to the
right strictly faster than those near y = 0). Now, fix points p,, p; €4 satis-
fying the following:

(a) nZ(pO) > 1—89 nz(Pl) <g,

(b) 7o (f**(po)) <&, my(f**i(py)) >1—¢ for some k>0 and i
=1,...,m1

(©) letting K = k+m, with k as in (b), for 0<i< K

7y (1 (po)) < i (ff (1)),
Ty (f' (Pl)) > 7y (f' (Wo)), U3 (fl (Po)) <m (fl (Pl)),
and
7y (po) <my(Wo), 71 (f*(Po)) <y (f* (o)),
ny(py) > 7wy (wy), m (fk (Pn)) >ny (fk (WI)),
(d) for some ko, ky, 0 <ky <k, <k,
Ty (fko (Po)) > Ty (ka(Wo)),
T (fkl (p1) <m (fkl (wy).
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This means that p, goes around wy, and p, goes around w,. The existence of
points po, p; €A satisfying (a) and (b) above follows from Condition B. Once
an orbit gets close to a boundary curve it will stay close for some iterates
because the boundary curves are invariant. So for any predetermined ¢ and
m, we can find points satisfying (a) and (b). The constant k will depend on
m;, ¢ and the map. To guarantee conditions (c) and (d) we select py, p; on
the extended orbits of po, p; respectively, e.g.: Suppose p, satisfies (a-d) with
some n €eo(z,) in place of w,. Then w, = fi(n)+(j, 0) for some i ‘between 0
and integer j, so we let py, = f* (Po)+(, 0).

Po.
wo ¢ *w, fholwp) $ 2 ¢ £ olwy)
"l pg)
o P o Flpy)
.fk(p1)
F(wy) ¢ L J}f*‘(w,) *lwg) b (wy)
£4(pg) Fipn) (oo
[ [
Fig. 6

Now we follow images of f7/(C,) under f and note that by repeated
application of the lemma we have that f/**(C,) has a section which is a
positive diagonal of Bf"(po) or) and contains no points of eo(z,.,) and hence

f7*®(C,) has a section which is a positive diagonal of B KoorKey) But

|y (f% (p(,))—nl (f"(pl))| > 1 by the choice of K so there must exist adjacent
points Wy, W, €eo(z,, ;) such that f7*X(C,) contains a section which is a
positive diagonal of By; ; . We call this set C,. By applying the lemma n, .,

more times we see that f™(C,) N B contains a component which is

SM(W) S M(Wq)

a positive diagonal for m=1, ..., n,,,. Hence we may let k, = K+2(q,

+4q,+,) and we have a set C,H _C which satisfies (#,,,), (see Fig. 7).
By induction this completes the proof for ¢ > 0. By an analogous

argument we can obtain negative diagonals of B,,,,, say C_,, which satisfy

(**_,) of the theorem. Since positive and negative diagonals must intersect,
the intersection of the C, and C_, yield the required point {. =
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Fig. 7

Remarks. (1) Note that tKe size of the k, depends only on the g,, ¢,+,
and the number of iterates it takes for orbits to “transit” across A.

(2) Given periodic sequences we can obtain periodic orbits in the above
by using the transit orbits to pick which adjacent points of eo(z,) we use, see
Boyland-Hall [BH].

(5) Concluding remarks. The point of this note has been to show that
the monotone twist condition and some assumptions on the existence of
orbits connecting boundary components forces the image of vertical strips to
behave in complicated but predictable ways under iteration. Hence by
elementary topological arguments we can prove the existence of orbits with
many different qualitative behaviors. Boyland [Bd1] has recently studied in
more detail the relation between various non-monotone orbits.

The author wishes to thank the member of the School of Mathematics
of the University of Minnesota for their hospitality and F. Przytycki and the
referee for comments and corrections.
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