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Introduction. Let G be a bounded Jordan-measurable domain in the
space E™ of m variables X = («,,...,%,) which can be approximated
by an increasing sequence of domain (, with regular boundaries (the
boundary 4G, of G, is a surface of class C}; for the definition of a surface
of class C! see [6], p. 132). We do not require any regularity properties
of the boundary of G.

We shall consider an operational equation of the form

() L(w)+ uE(u) =0,

where
m
Lw) = )
t,7=1

i1s a selfadjoint differential operator and u is a real parameter. We make
the following assumptions: a;(X) = a;,;(X) (i,j =1,...,m) are of

class C" in G, q(X)>0 is continuous in G and the quadratic form

0 o
o2, [a'ij(x) 6_:17,] —q(X)u

m
D a;(X)& & is positive definite in G. Concerning the operator K we
1,7=1
make the following assumptions:

1° K: #2(@) - #*(G), is a linear bounded operator,

2° the subspace £*(G) N O(@) of continuous functions is invariant
with respect to K,

3° K is symmetric, i.e.
(p) K) = [o(DE@)dX = [p(X) K (p)dX = (p, K(9))
G aq

for ¢, pe £X(@),
4° K is positive, i.e. (p, K(p))> 0 for ¢ # 0.
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We shall also consider a generalized boundary condition (ef. [1]
and [2]) which in the case where the boundary 0G is regular may be
written in the form

d
2) -%—h(xm —0 ondG¢—I, w=0 onl,

where I" denotes an (m—1)-dimmensional part of G (I" being connected
or not); in extreme cases I" may be the whole boundary of @, or an empty
set. Here h(X) is a non-negative continuous function in G and du/dv
is the transversal derivative of » with respect the operator L(u), i.e.,

m

3) du Zai,-(X) 0% cos(n, z),

P 0x;

1,7=1

n being the interior normal to 0G.

We will consider the eigenvalues and eigenfunctions corresponding
to equation (1) and condition (2) (we shall shortly say: eigenvalues and
eigenfunctions of problem (1), (2)). The eigenvalues and eigenfunctions
of problem (1), (2) will be defined variationally. For this purpose let
us write

B O Op Ay
(4) D(%w)—éf[_Zai,-a—wi—@ +q¢w]dX+ fhwdﬂ',
%,7=1 aG—-r
(5) H(p,y) = [oK(p)dX = (p, K(v)).
G

The bilinear forms (4) and (5) are defined in the space 2 (for the
definition of the space 2 see [1]) and have all the fundamental properties
mentioned in [1].

1. EIGENVALUES AND EIGENFUNCTIONS OF PROBLEM (1), (2).

1. The first eigenvalue 2, of problem (1), (2) is defined as (comp. [1]
and [4])

_ ... D)
(6) A = 21’;1 H(g)'

where 9 is the subclass of 2 of functions ¢ such that ¢ = 0 on I' (in
the generalized sense), and the first eigenfunction u, is that ¢ at which
the minimum (6) is attained.
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Having defined the eigenvalues 2,,..., 4, and corresponding eigen-
functions #,, ..., %,, we put

. D
(7) M1 = f}ﬁ%"

where ¢, is the subclass of & consisting of the functions ¢ satisfying
the orthogonality conditions =
(8) H(p,u;) =0 fori=1,...,n,

and u,,, is that ¢e X", at which minimum (7) is attained.
We shall need the following assumption:

HyproTHESIS Z. Given (1) and (2), there exist a sequence of eigenvalues

of (1), (2)

(9) 0< h<A<A<...
and a corresponding sequence of eigenfumctions
(10) Uy (X)) up(X), Ug(X), ...

which belong to F (1).

The problem whether Hypothesis Z is satisfied under the assumptions
which we have made concerning the coefficients of operator L of equation
(1) will not be considered in this paper. Of course, this problem depends
ossentially on the form and the properties of the operator K of equa-
tion (1).

In the sequel we shall use the following formula:

. d
(11) D(yp, v)+ J L{g)ydX + f 'p(dff-hqv) a8 =0,
(7] oG—-r

for every pe % and ye9. The proof of formula (11) is quite similar to
the proof of an analogous formula in [1].

THEOREM 1. If Hypothesis Z 1is satisfied, then each function wu, of
sequence (10) satisfies equation (1) for u =14,, n =1,2,3,..., and
Uy € Fy,r(G) (3).

The proof of this theorem is quite similar to that of an analogous
theorem in [1], and is omitted.

2. The maximum-minimum property of eigenvalues of (1), (2). We
shall now give another definition of eigenvalues of problem (1), (2).
Let ¥°, denote a set of » functions v,(X), ..., v,(X) belonging to £*(Q@)

(1) By # we denote the subspace of 2 of all functions ¢ of class 0? in G such
that L(p)eL2(@) (see [1]).

() By %3, (@) we denote the subspace of # of all functions ¢ satisfying condi-
tion (2) in the generalized sense (see [1]).
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and let

where 7, is the subclass of & comsisting of functions u(X) satisfying
the orthogonality conditions

Hu,v)=0 for¢=1,...,n.

THEOREM 2. If Hypothesis Z and the above assumplions are satisfied,
then
(12) Anpr = SUPA[7,],

"’n
where ¥, i8 defined above.

The proof of this theorem is quite similar to the proof of an anal-
ogous theorem in the case of differential equations (cf. [3], p. 405 or [6],
p. 289).

The proofs of the following theorems are also similar to the proofs
of analogous theorems for differential equations and are omitted.

THEOREM 3. If {u,}, {4,} and {v,} are the sequences of eigenvalues
of equation (1) with boundary condition v = 0 on 0@, with boundary con-
dition (2) and with boundary condition du/dv = 0 on 0G, respectively, then

Va <A <pn (m=1,2,3,..).

THEOREM 4. If K,—K, is a positive operator and if {3?} and {2}
are the sequences of eigenvalues of problem (1), (2), where K = K, and
K = K,, respectively, then

A< (m=1,2,3,...).

2. COMPLETENESS OF EIGENVALUES OF PROBLEM (1), (2)

Let us denote by {x,} ‘the increasing sequence of eigenvalues for
the differential equation

(13) L{w)+ uMw = 0

with boundary condition (2), where L(w) is the differential operator
from equation (1) and

M = K| = sup| [ p(X)K(p)dX: [¢*(X)dX =1}.
(e Qq

We assume the following
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HYPOTHESIS Z,,. For problem (13), (2) there exist a sequence of eigen-
values

(14) 0 <y <y <3< aa
and a corresponding sequence of eigemfunclions
(15) Wy (X), w,(X), wy(X), ...
which belong 1o &F.

We shall prove the following

THEOREM 5. If hypotheses Z and Z,, are satisfied and if the range
R[K] of operator K contains the space F, (@), then lim 1, = + oo.

i—>00

Proof. To begin with, observe that for every function ¢(X)e £*(G),
we have the inequality

(16) H(p) = [¢(X)E(p)dX < M [¢*(X)dX.
G G

From (16) it follows that for every function ¢(X) belonging to 9
we have

Dip) . Do)
H(p) ~ J(p)’
where J(¢) = Mf¢2(X)dX. Let 7,(X) =w,(X) (¢ =1,...,n), where
G
w;(X) (¢ =1,...,n) are the functions of the sequence (15), then
. . D(u)
d[Vn] = I = g
ueX J (u) ,

where ¥, = {,(X), ..., 5,(X)}. Let us denote by ¥, = {#,(X), ..., v, (X)}
a sequence of functions 9,(X) (¢ =1,...,n), where

(17) Mo,(X) =K(®;) fori=1,...,n.

Since 7,(X) (¢ =1,...,n) belong to R[K], therefore there exist
solutions of equations (17).
From (17) it follows that

(18) J(uw,s) = H(u,d) fori=1,...,n,

where u is an arbitrary function of 9. From (18) it follows that the class
X, consisting of functions ¢(X) satisfying the conditions H(p, ;) = 0
(¢ =1,...,n) coincides with the class of functions ¢(X) satisfying the

conditions J(p,v;) =0 (¢ =1,...,7n). Therefore we have
_ D D) D(u)
arv,l mln Hu ) :T(_'u)- :};ﬂ Tw) = 2,
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whence
by = supd[V, 1= d[¥,] = x,.
”n

It is known ([4], p. 424) that the sequence of eigenvalues of problem
(13), (2) tends to 4+ oo for n — oo; therefore by the last inequality sequence
(9) also tends to infinity.

CorOLLARY 1. Every eigenvalue of (1), (2) has finile multiplicity.

THEOREM 6. Under the assumptions of Theorem b the set of eigen-
functions of problem (1), (2) is a complete system in the class L*(G) with
respect to the scalar product H(u, v).

Proof. Let {u,(X)} be the sequence of eigenfunctions of problem
(1), (2) normalized so that H(u,) =1 (n =1,2,3,...), and let f(X)
be any function in #£*(G). Let ¢, = H(f,u,) (n =1,2,3,...) and let

n

8.(X) = Y ¢,u,(X). In virtue of Theorem 5, by a reasoning similar to
k=1
the proof of an analogous theorem in [7], p. 303, we have

(19) lim H(f—8,) = 0.

From (19) it follows that the sequence {u,(X)} is a complete system
in #*(@), with respect to the scalar product H (u, v).

COROLLARY 2. The sequence (10)' of eigenvalues of problem (1), (2)
contains all the eigenvalues of this problem.

3. SOME PROPERTIES OF THE FIRST EIGENVALUE
AND FIRST EIGENFUNCTION OF PROBLEM (1), (2)

In the sequel we shall need the following assumption:

HYPOTHESIS Z,. 1° The operator K, besides the properties formulated
in the introduction, satisfies the following condition: if ¢(X) >0 in G and
peL2(G), then K(p) =0 in G. 2° No eigenfunction of (1), (2) can vanish
identically in any subdomain of domain G.

. It follows from the definition of %,(X), » =1,2,3,... that

=0if 2 #) o
(20) H(u;, u;) £0 i § =] (1, =1,2,3,...).
This implies, by hypothesis Z,, that all functions of sequence (10)
except at most one, change their sign in G. And, since the functions u, (X)
are continuous, there exist zero sets in G for these functions.

LeMMA 1. Under assumplions Z and Z, each function ueF, (@)
satisfying equation (1) with u = A, preserves ils sign in G.
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Prooi. Let u(X) be a function satisfying the assumptions of Lemma 1,
and let 4, = 4, = ... = 4, < 4,, (i.e. 4, is an. s-fold eigenvalue of (1), (2)).
Suppose that #(X)>0 in G, = G. Let us write G, = G—@,. We have
#(X)< 0 in G,. If G, is non-empty, then it is open. Put

0 u(X) for Xe@,,
o for Xe@,.
By (11) for ¢ = u(X) and y = U(X) we get
(21) D(u, U) = A H(u, U).

We see that D(u, U) = D(U) and H(u, U) = H(U)+H(u—U, U)
< H(U), since H(u—U, U) < 0. From this, by (21), we get

(22) D(U) < L, H(U).

From the definition of the function U, by assumption Z, (2°), it
follows that the functions U, ,, ..., , are linearly independent in @. Put

D(X) = U+c,uy+...4-c,u,.

Then @ £0 in G. Let ¢; = —H(U, w;)/[H(%;) (¢ =1,...,8). Then @
is orthogonal to u,,...,u, and therefore ®e¢.¢,. Hence

(23) D(D) > A, H(D).

On the other hand, ¢ = ¢,u,+}...+¢c,u, belongs to &, (G) and
satisfies equation (1) with x = 4,. Therefore, by (11) we have

D(p,y) = A H(p,v)

for every ype9. As a special case from the last equality we get
(24) D(p, U) = A H(e, U),
(25) D(p) = 4, H(g).
Because of the equality ® = U+, (22), (24) and (25) imply
D(?) < 4, H(D),

whence, by (23), 4, > 4,,,, which is a contradiction.

LEMMA 2. Under assumptions Z and Z,, if p, is a real number such
that there exists a function u(X)e %, r(@) which does not change its sign
in G and which satisfies equation (1) with 4 = u, and u(X) #= 0 in G, then y,
18 the first eigenvalue of problem (1), (2).



110 J. Bochenek

Proof. We shall use formula (11) first for the pair u, 4, and then
for the pair %,, u. Since both u and «, belong to #, .(G) and satisfy equa-
tion (1) with u = 4,, 4 = u,, respectively, we get

D(uywy) = A H(u,wu,) and D(uy, u) = p H(uy, w),
whence by the symmetry of D and H
(#y— 4} H (u, uy) = 0.

Since # and %, do not change their sign in G and %, does not vanish
in any subdomain, we have H (u,u,) # 0, and thus u, = 2,.

THEOREM 7. Under assumptions Z and Z, the first eigenfunction
u,(X) of problem (1), (2) does mot vanish at any point of G.
Proof. From Lemma 1 it follows that the function w,(X) does not

change its sign in G. Suppose that «,(X) > 0 in G. From equation (1)
it follows that the function u,(X) satisfies the equation

(26) L(u,) = —A, K (uy).

By assumption Z, (1°) and 4, >0, we have — 1, K(u,) <0 in G.
According to E. Hopf’s theorem (see [5]), the value 0 cannot be attained
by #,(X) in G if u,(X) does not vanish identically in ¢. Thus u,(X) > 0
in G. In the case u,(X)< 0 in G, the proof is analogous.

THEOREM 8. Under assumptions Z and Z, each function ¢(X)eF;, (@),
not vanishing itdentically in G and satisfying equation (1) with pu = 2, is
equal to the first eigenfumction of (1), (2) multiplied by a constant ¢ +# 0.

The proof of this theorem is quite similar to an analogous theorem
in [1], and is omitted.

CorROLLARY 3. The first eigenvalue of (1), (2) is a single eigenvalue, i.e.
Ay < A,

Remark 1. The particular case of problem (1), (2), where K (¢)
= o(X)gp, o(X) > 0 is a continuous function in G, was considered in [1].

Other cases of problem (1), (2) and their applications will be published
in the next paper.
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