COLLOQUIUM MATHEMATICUM

VOL. XXXI 1974 FASC. 1

ON NULL GEODESIC COLLINEATIONS
IN SOME RIEMANNIAN SPACES

BY

W. ROTER (WROCLAW)

1. Introduction. A non-flat n-dimensional Riemannian space is said
to be of recurrent curvature [5] (briefly, a recurrent space) if its curvature
tensor satisfies the condition

(1) By = € Ry

for some non-zero vector ¢;, where the comma indicates covariant dif-
ferentiation with respect to the metric of the space.
As an immediate consequence of (1) we get

(2) R, = ¢ Ry.

Spaces whose Ricci tensor satisfy (2) for some non-zero vector c;,
where n > 2 and R,; is non-zero, are called Ricci-recurrent [3]. Thus
every recurrent space (n > 2) with non-vanishing Ricci tensor is Ricci-
-recurrent. .

Differentiating (2) covariantly and contracting with g%, we obtain

R(eip—cry) =RBy— Ry =0.
Hence, if the scalar curvature of a Ricci-recurrent space is non-

-zero, then the vector of recurrence ¢; is a gradient. Consequently, as
it has been proved ([4], Lemma 2), we have

(3) E.R'; = }RRy.

An n-dimensional Riemannian space is called Ricci-symmetric if its
Ricei tensor is non-zero and satisfies
(4) 'R‘ij,k == 0.

Spaces of this kind are, evidently, generalizations of so-called sym-
metric (in the sense of E. Cartan) spaces, i.e., non-flat Riemannian n-spaces
characterized by the condition

(5) -Rhijk,l = 0.
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It follows easily from (4) that the scalar curvature of a Ricci-sym-
metric space and, therefore, of a symmetric space, is constant.

According to Chaki and Gupta [1], an =n-dimensional (n > 3)
Riemannian space is said to be conformally symmetric if its Weyl’s con-
formal tensor

) .
(6) Oy = Rl — Y (9 B" — guB" + 05x By — 8} Ry) +

(89— 6} 9ue)

T —Dm—2)
satisfies
(7) ey = 0.

It can be easily verified that every conformally n-space flat (n > 3) as
well as every symmetric Riemannian n-space (n > 3) is necessarily con-
formally symmetric, but the converse is, in general, not true.

Differentiating (6) covariantly, summing over 5 and ! and taking
into account (7) and the well-known relations

Rrijk,r = 'Rﬁ,k - Rt’k.j ’ E’ fr = %RJ
we obtain

(8) Ry — Ry ;= (B 19— B ;9u)-

2(n—-1)
It follows from this equation that a conformally symmetric space
is of constant scalar curvature if and only if

(9) * By = Ryy.

Spaces satisfying (9) will be called almost Ricci-symmetric spaces or,
briefly, ARS,-spaces.

Evidently, every Ricci-symmetric as well as every conformally
symmetric space with constant scalar curvature is an ARS,-space.

Katzin and Levine [2] have introduced the concept of a null geodesic
collineation. It is defined as an infinitesimal point transformation
' = g' + '8t for which

(10) Lr1h = ghrgijQ,rr

where @ is a certain function, and LIj; denotes the Lie derivative of
Christoffel symbols with respect to o* (for geometrical interpretation,
see [2]).

If Q = const, the null geodesic collineation is an affine one.

The purpose of this paper is to prove that null geodesic collineations
in recurrent as well as in ARS,-spaces with R, 7 0 are necessarily
affine.
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Throughout this note we assume that metrics of considered spaces
are indefinite.

2. Preliminary results. First, we shall obtain some results on null
geodesic collineations in general Riemannian spaces.

LEMMA 1. If a Riemannian space admits a null geodesic collinea-
tion, then

(11) LR, = Ar,rgij - Ai,j’
(12) ap B pjp + Gy Ry + @ BTy = 0,
(13) 24,Ry+ ARy + ApRy+a" R°,, ,+a"y R, ,

=24, 0— 94 A" e — I 4" 4r»
where A* = ¢"@Q, and ay; = Lgy.
Proof. As a consequence of (10), we obtain
(14) LI}y = Ahg,.
Substituting (14) into the well-known formula

LRy = (L)~ (LT3) 4,
we have
(15) LR ik = Ah.kgtj_Ah,jgik'
Relation (11) follows immediately from (15).
Taking now into account (14) and the formula (see [6])

LTy = 39" [(Lgy)+ (Lgn) 3 — (Lgy).» 1,
we find

(16) An9y = Hapg o+ ays;—ay,z),
whence
Aigry = d(ayp+ag;—ay,).

The last equation together with (16) yield
(17) Apiy = Apgy+ Aigns
which, by covariant differentiation, implies

Ui,k — Wpi kg = Ah,kgtj + Ai,kghj —Ap 90— A 390

Applying now the Ricci identity, we obtain
(18) A B+ 0 By = Ap 90+ Ay Gne— An 9 — Ai 1905
or, by a cyclic permutation of indices ¢, j and %,

A B i+ e B jjg = Ap 90+ Ag i 90— Ans9ix — A,i Onics
ap Ry + ahrRrkz'j = Ah,igkj + Ak.ighj - Ah,jgki - Ak,j Ini-
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But (18), together with the last two equations, gives
@i B g + Onr B g + @y Ry + @ By + 0 Ry + @3, BNy = 0
which, in view of
Onr B yj1+ O BT jpi + 03 RT3y = 0,

leads immediately to (12). Differentiating now (18) covariantly and making
use of (17), we get

(19) g4A, B+ gud, By + ARy + Ay Byygi + 0 By 1+ g By,
= A 19+ A nGne— An a9y — A adn
or, by contraction with g*,
AR+ ARy + ARy + Ay Ry +-a" R, ,+a", B, 4
=Aput+Aipm—954 4 — 9134 4.
But the last equation, in virtue of
ARy = ARy +A Ry,
and
(20) Ayg = A+ ARy = A, 4,

can be written as

AR+ ARy + ARy + AR+ Ay Ry + 0" R, o+ 0", R, ,
= AR+ A i+ Ap i — 95 A" jo—nj A" 40
which, because of 4;;; = A, ,;, proves the last part of our lemma.

Now we prove some results on null geodesic collineations in ARS,-
-spaces.

LEMMA 2. If an ARS,-space admits a null geodesic collineation, then

\

(21) 24,R";+ 944, R, +g, A, R+ A Ry +
+ ARy~ 9y B+ 91 Bi = 24, 4iy
(22) AR+ 944, R, — 93 A, R’y + B,9;—B ;9% = 0,

where B = A" .
Proof. It is easily seen that (9) gives

F? tik,s — Rc’j,k—Rik,j = 0.
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Moreover, as an immediate consequence of (20), we have
(23) Af"_r = B,{—l—Ar.Rr".

Substituting now the last relations into (13), we obtain (21), which
completes the proof of the first part of our lemma.

It follows easily from (9) that L(R;,) = L(R;,). Using now the
well-known formula

L(Ty,x) = (LTy)p— Ty LIG— Ty, LI,
and taking into consideration (11) and (14), we obtain
Ajpi—Aiju+ 954, R —ga A, R+ B gy — B 495 = 0

which, in view of the Ricci identity, is equivalent to (22).

LeMMA 3. The vector A; of an ARS8 -space admitting a null geodesic
collineation satisfies the conditions

(24) AR = —}RA,,

(25) B, = ﬁ RA,,

(26) A Ry = 2(T1—1_) R(4A;94—Ar94),
en wB, = 5(—;':1—) Ruwg,; — E%?L%RA,A,,

where w = A" A,. :
Proof. The contraction of (21) with g¥ gives
(n+4)A, R, +RA,+(n4+1)B, = 247,
or, in view of (23), : '
(28) (n+2)A,R",+RA,+(n—1)B,; = 0.
On the other hand, contracting (22) with ¢¥, we get
(29) nA R+ (n—1)B, =0.
Comparing now (28) with (29), we obtain easily (24) which, together
with (28), leads immediately to (25).

Relation (26) follows easily from (24), (25) and (22).
Substituting now (24), (25) and (26) into (21), we find

(30) ARy 4+ A Ry + D) RA.gy+

1
(n—1)
1

t 21 A9 35

RAhgij = 2Aj,h‘i .
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This equation, in view of A4;,;, = 4, ;, yields

3
(31) AyBy— AyRy + )

3
Bm—1) RA;g;— mRAh.% =0,

which, by transvection with 4* and making use of (24), leads to (27).
This completes the proof.

3. Main results. Now we can proceed to main results of this paper.

THEOREM 1. If an ARS,-space with R, # 0 admits a null geodesic
collineation, then this collineation i8 necessarily an affine one.

Proof. Since the scalar curvature of an ARS,-space is constant,
equation (27) gives

n+2 n+2

3
wyRy+wRy, = 2m—1) Rw 94— 2n—1) RA;A,— 2m—1) RAA;,,

whence, by (9),

Ry —w; Ry = F(n—1) Bw g4 +
+ 2:‘n—+_21) RA A, — % RA,A,— ﬁ Ruw ;9.
This equation, by (27), can be written in the form
(32) Rw A, A;—Rw;A;A; = RwA;; A;— RwA,;A,.
Transvecting now (32) with 4* and taking into account the equality
(33) ATA, = jw, = ATA,,,
we find
(34) Rw*A;; = 3 Rww A, + Rww ;4,— Rw , A" A, A,

This, by transvection with A® and making use of (33), yields
Rw?w; = RwA™w,A,.
Substituting this relation into (34), we get
(35) Rw®A;; = } Bwiw A,
or, by contraction with g9,
(36) 3} Rw:A"w, = RBw?.
On the other hand, since 4;; = 4,4, (34) gives
2 Rwiw;A; = 3 Rww ;A,,
whence, in view of (36), we have

(37) $ RwPw; = RBw?A,;.
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This together with (35) implies
(38) R’W‘A‘J = RB'wsA‘A,.

Differentiating now (38) covariantly and wusing (37), (38) and (25),
we obtain

RuwsA,,, = Rrus A A A,

n
2(n-1)

Hence, RwS(A,;,— A;,y) = 0. But this equation implies Rw®4, R,
= 0 which, by (24), gives finally

(39) Rws A, = 0.

It follows easily from (24)-(26) and (21) that the assumption B = 0
yields

and
(41) A‘RM +A70R‘! = 2Aj,hi’

On the other hand, from (27) we have w = 0, and, as a consequence
of (33),

(42) A'Ar,j = ArAj.,. = 0.

Therefore, transvecting (18) with A* and using (40) and (42), we
obtain

(43) A‘Ah.] +AhA{,j = 0,

whence we have ([4], Lemma 1) 4;; = 0. The last relation reduces (41)
to the form A;R,+A4,R,; =0. But this, since R, 0, gives ([4],
Lemma 1) finally 4; = 0. If, accordingly to (39), w = 0, then, in view
of (27), we have RA; = 0. Hence, in all cases, 4; = 0, which completes
our proof.

As a consequence of Theorem 1, we have

COROLLARY 1. If a Ricci-symmelric space admits a null geodesic col-
lineation, then this collineation is an affine one.

THEOREM 2. If a symmetric space admils a null geodesic collineation,
then this collineation is mecessarily an affine one.

Proof. If R; # 0, then our theorem follows immediately from
Corollary 1. Suppose, therefore, that R; = 0. Then, in view of (26), we
have A,.R';, = 0. Moreover, by (30), 4;,; = 0. Hence, in virtue of (19),
we obtain

A;Ryj+ Ap Ry = 0

which, evidently ([4], Lemma 1), completes the proof of the theorem.
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It is easy to see that, for a conformally symmetric space with
constant scalar curvature and non-vanishing Ricei tensor, Theorem 1 holds.
If R; =0, a non-flat conformally symmetric space is, evidently, sym-
metric. Thus, in view of Theorems 1 and 2, we get

COROLLARY 2. If the scalar curvature of a non-flat conformally sym-
metric space admitting a null geodesic collineation 18 constant, then this
collineation is am affine one.

THEOREM 3. If the scalar curvature of a Ricci-recurrent space admitting
a null geodesic collineation is mon-zero, then this collineation reduces to an
affine one.

Proof. The contraction of (12) with ¢ gives
(44) @y By = ag R';.
Differentiating now covariantly and using (17), we find
9ip A B — Gip ApR'i+ Ay Ry — Ay Ryy = 0 R’y y—a R
which, by (2) and (44), yields

(45) I A, B —gip A, B+ ARy — Ay Ry = 0.
From the last equation, by contraction with ¢, we get
(46) 'nA,R'k = RAk

or, by transvection with R¥,,
(47) 'nA,.R',R'h == RA'R'h.

But (47), in view of (3), can be written as (n —2) RA,R", = 0. Hence,
A,R", =0 which, together with (46), implies 4, = 0. Thus the proof
of the theorem is complete.

THEOREM 4. If a recurrent space admits a null geodesic collineation,
then this collineation 18 necessarily an affine one.

Proof. Differentiating (12) covariantly and taking into account (17)
and (1), we find

(48) 90 AL B oji+ Gip Ar Biii + Gip A By +

+ AR+ Ay Ry + Ay Ry = 0
which, by contraction with ¢, yields
(49) (n—1) A, B+ A; Rpp— Ay By = 0.

If R is non-zero, then R; # 0. Theorem 4 is, therefore, an immediate
consequence of Theorem 3. Suppose now that B = 0. Then, it follows
from (46) that A,R", = 0. This reduces (45) to the form 4;R,,— A4, R; = 0.
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Substituting this equation into (49), we obtain easily (40) which, by
equation (48), gives

AiRphjk +A1Rphk‘ +AkRphij = 0.
But the last relation implies
(50) .Ai.A,‘Rphjk = 0.

Since the space is not flat by the assumption, (50) yields w = ¢
and, consequently, A"A4,, = 0. Transvecting now (18) with A* and
using (40) and the last result, we find easily (43). Hence, 4;; = 0.
Therefore, (18) can be written as

@ By + @ By = 0.
This, together with (1), (40), (19) and A,;. = 0, gives finally
A By +Ap By, = 0,
which completes the proof ([4], Lemma 1).
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