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1. R-quasi-algebraic structures in R"

Let A4 be any set of real functions defined on subsets of R". Denoting the union
of all. domains D, of functions « € 4 by Points A and, for a given set S, the constant
function on S with value ¢ by cs, we assume that a+f, a* 8, cpoinis 4 EAfora, f € 4
and c € R. In [5] similar sets 4 with values in a given field K were considered.

Such sets A are called K-quasi-algebraic spaces (K-q.a.s.’s). In the particular
case where X = R we consider R-q.a.s.’s. For any set 4 of functions the smallest
topology on Points 4 such that all D,, a« € 4, are open will be denoted by topA4.
If A is an R-q.a.s. then topA will be regarded as the topology of the space 4. For
every set A of functions with values in the field KX we have the smallest
of all K-q.a.s.’sA,, containing 4 and such that Points4, = Points4 (see [5]).
The K-q.a.s. A, is called the K-q.a.s. generated by A.

We have got the concept of an A-germ defined in the usual way as a coset
of the equivalence relation =, where (x,p) = (8, q) iff @, € A, p = g and there
exists a U e top4 such that pe U €« D,nD; and «|U = B|U. Each A-germ £ has
the source aé and the target b&, («, af) € &, x(af) = b&, a € A. Denoting the set
of all « € 4 such that p € D, by A(p), the set of all A-germs £ with a& = p by A(p),
and assigning to each a € A(p) the A-germ A,(e) including («, p), we have the map-
ping

A,: A(p) — A(p).

A(p) is, in the natural way, an R-algebra, where §4+9 = Ap(a+8), & = A (a- f),
c§ = Ay(car), £ = Ap(), 3 = A,(B), 2, € A(p) and ¢ in R.

We denote the set of all « € A(p) such that a(p) = 0 by 4°(p) and, similarly,
we denote the set of all germs & of A(p) such that b& = 0 by A°(p). A°(p) is the
ideal of the R-algebra 4(p). Taking the vector space ToA = A°(p)/(/1°(p))2 where
(A°(_p))2 is the square of the ideal A°(p), and considering the canonical mapping
AP : A°(p) » TyA, we have the commutative diagram of epimorphisms

[277]
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Alp)— i)
~

!
30p)
where 0,(&) = &§—A,(bpoints 4) for £ in A(p). The dual vector space to T, A is usually

denoted by T, 4 and called the Zariski tangent space to A at the point p. We evidently
have the natural isomorphism

(L.1) wiw: T,4A - DerA(p),

where Der A(p) denotes the vector space of all derivations of A(p), and, for any w
in T, A, we have w in Der A(p) defined as follows:

(1.2) w(a) = w(4P(4p(@)) for  aeA(p).

Let us take the mapping f: M — N of sets. Setting f*(8) = g o f for any real
function f defined on the subset D;s of N we obtain the mapping /*: R(N) - R(M),
where R(M) stands for the set of all real functions defined on subsets of M. We
have the smooth mapping f: 4 -+ Bof q.a.s. 4 into q.a.s. Biff f maps the set Points 4
into the set PointsB and 8 o fe 4 for B € B. In other words, f*[B] = A.

For any R-q.a.s. A and any subset M of Points 4 we have the R-q.a.s. Ay defined
as the set of all real functions f such that for any p € D, there exist U € top4 and
« € A fulfilling the condition p € UnM and S|UnM = a|UnM. 1t is easy to check
that top Ay is the topology induced to the set M by top A and we have the commuta-
tive diagram (cf. [5]).

iy

Alp) Al p)
‘p AV
Ag - - 0
Alp)———————=4,ip] Antp
(1.3) | / B
Z”(p) —a- Eﬁ,(p)
P A2
. I ldH -
To A ~Tp A,

As a direct consequence of the definition of isomorphism (1.1) and the commuta-
tivity of diagram (1.3) we get

PROPOSITION 1.1. If p € M < Points 4, then we have the morphism

vi->v oidly: Der 4y (p) - Der 4(p)

and the commutative square
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rpidM
To Ay *'p

|

Der 4,,{p) —————= Der Alp)

~
)3

where the vertical arrows are natural isomorphisms.
Let A, and A4, be any sets of functions with values in R. Let us set

7. Points 4, x Points 4, — PointsA4,, 7,(q,,9:) = q,

for (q,, q,) € Points4; xPoints4,, i = 1,2. The smallest R-q.a.s. 4;x A4, con-
taining the set m¥[4.]un3[4,;] such that Points(4, x A,) = Points A4, x Points 4,
is called (cf. [S]) the Cartesian product of the R-q.a.s.’s A, and A4,. It is easy to verify
the following

PROPOSITION 1.2. We have A, xA, = Ao xA,q, where A, is the R-q.as.
generated by A;, i =1, 2.

The set A of real functions is said to be locally bounded iff for any a € A and
any p € D, there exist Uetop4 and ¢ > 0 such that pe U = D, and

(1.4) la(q)l < ¢ for gqeU.

PROPOSITION 1.3. If A is locally bounded, then the R-q.a.s. A, generated by A
is locally bounded.

Proof. Setting A, = AU {cpoimisas CER}and A, , = Ay +Ax- A, k=1,2, ...,
we have (see [5]) 4o = J A4, and topA, = topA. For any sets A and B of real
k

functions we have denoted here the sets {«+f; a €4 and feB}and {x:-f; x€ A
and f € B} by A+ B and A4 - B, respectively. Let us take x € 4, andpe D,. If x € A4,
then there exist U etop4 and ¢ > 0 such that (1.4) is satisfied. If o = Gpointsa»
where a € R, then, setting U = Points4 and ¢ = |g|, we obtain (1.4) again. Now,
for any « € A, and p € D,, let there exist U € top4 and ¢ > 0 such that (1.4) holds.
Take «, f, ¥ € A, and p € D,nDynD,. Then we have U etopA such that the in-
equalities |x(q)| < ¢/2, |8(q)] < V¢/2 and |p(q)| < Y/ ¢/2 for q € U hold. Then [(x+
+8-9)q)| < ¢ for g € U. Hence, by the definition of A, ,, for any a € 4;,, and
p € D, there exist U etopA4 and ¢ > 0 such that (1.4) holds. This ends the proof.

PROPOSITION 1.4. The Cartesian product of two locally bounded R-q.a.s.’s is
locally bounded.

Proof. Let A, and A, be locally bounded R-q.a.s.’s. We set z;(p,, p2) = p;
for (p,, p;) € Points A, x Points 4,. Then

m;: Points 4, x Points 4, — Points4,, i=1,2,

and (cf. [S]) 4, x 4, is the smallest of all the R-q.a.s.’s containing z}[4,]va3[4,]
such that the set of all points is equal to Points 4, x Points 4,. We have top(A4, x
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x A;) = topA, xtopA,. According to Proposition 1.3 it suffices to prove that for
any « € n}[4,]vn3[4,) and p € D, there exist U € topA, xtopA, and ¢ > O such
that (1.4) is satisfied. So, let us take any a € n{[4,)and p € D,. We have ¢ = «, o 7,
where «, € A;. Hence, 7,(p) € D, . Thus there exist U, etopA4; and ¢ > 0 such
that |a,(q,)| < ¢ for g, € U,. Setting U = U, xPoints4,, we obtain U € top4, x
xtopd, and |x(q,, g2)] = |x,(qy)| < ¢ for (q,, g>) € U. This ends the proof.

PROPOSITION 1.5. If A, and A, are sets of real functions defined on subsets of R"
and continuous in the usual sense, then A x A, is a set of continuous functions.

Proof. Let us remark that, if every function belonging to A is continuous,
then every function belonging to the R-q.a.s. 4, generated by A is also continuous.
Taking any function of the form « o z;, where a € 4;, i = 1, 2, we state that it
is continuous. Therefore every function of the set 77[4,]Jun3[4,] is continuous
in its domain. Thus all functions belonging to A, x A, are continuous. This ends
the proof.

2. Cauchy P-decomposition property

Let A be a set of real functions and let P be a finite subset of 4. We say that a func-
tion « € A has the Cauchy P-decomposition property in A iff for every p € D, there
exist functions «,, ..., «, € A x A and a neighbourhood U of p open in topA such
that UxU < D, n ... nD,_ and

@1 a(N—-alq) = ) (e, P (ul)-ml@)) for r,gel,
=1

where P = {m,, ..., ®,}. According to Proposition 1.2 any function x € 4 has
the Cauchy P-decomposition property in 4 iff « has the Cauchy P-decomposition
property in A,. We will say that 4 has the Cauchy P-decomposition property (P-d.p.)
iff every « € A has the Cauchy P-decomposition property in A.

PROPOSITION 2.1. If a set A of real functions has the P-d.p., then the R-q.a.s.
Ao generated by A has the P-d.p.

Proof. Setting A, = AU {a@poinisa; a€R}Yand Ay = Ay +Ax- Ay, k=1,2, ...,
we have 4, = |_) 4,. It is evident that every « € 4, has the Cauchy P-decompo-
p

sition property in 4,. Assume that the condition
(k) every function of A4, has the Cauchy P-decomposition property in Ao,

holds. Let « and § have the P-d.p. in 4,. We may assume (2.1) and

BO~B@) = D Blr, ) (m()-7(@)) for r,qeU,
jml



QUASI-ALGEBRAIC REPRESENTABILITY 281

where a,, ..., %, fi,...,Pn€AxA, peUctopd and UxU < D, ... nD, N
NnDg ... nDg, . Hence we get

a()B(r)— a(g) B(g) = (a(r)— a())B(r) + (@) (B(r)— (q))
= ZV‘(” q) (mu(N—n(q)) for r,qel,
i=1

where y.(r, 9) = «,(r, @) f(r)+«(q)Bi(r, q) for (r,q) e O (Ds, n Dg). 1t is evident

that y; € A x A. Similarly, we check that «+ f has the same property. Taking any
y € Ayy, we have y = a+f-fB,, where a, 8, f, € A,. Thus, §- B, has the P-d.p.
in Ao and y has it, too. Therefore the condition (k+ 1) holds. This ends the proof.

An element !/ of R" is said to be a direction of the subset M of R" at the point
p € M iff there exist two sequences p,, p,, ... and py, p3, ... of points of M tending
to p such that p, # pi, k = 1,2, ... and (ps—pu)/1pi—pxl = 1, as k —» oo (see [7]).
The vector subspace of R" spanned by the set of all directions of M at p will be
denoted by Dir, M.

We say that a locally bounded set 4 of real functions with Points4 = R",
having the P-d.p., where P = {#n,, ..., #,}, #;: R" = R being the standard projec-
tions, i = 1, 2, ..., n, and such that dimDir, U = n, when p € U € top 4, establishes
a quasi-algebraic structure in R". Propositions 1.3, 1.4 and 1.5 yield

PROPOSITION 2.2. If A establishes a quasi-algebraic structure in R", then the
R-q.a.s. A, generated by A is a quasi-algebraic structure in R" and every function
belonging to A, is locally Lipschitzian, i.e., for every point p of the domain of o € Aq
there exist U etopA, pe U and L > 0 such that |a(q)— a(q,)| < L|lg—q,| for q, q,
€ U. Thus all functions belonging to A,, and all functions belonging to Ax A as well,
are continuous in the usual sense.

Now we shall give some examples of quasi-algebraic structures in R".

ExaMPLE 1. Let A; be the set of all polynomial functions of » variables and
all functions derived from them by restriction to open subsets of R" as well.

EXAMPLE 2. Let A, be the set of all real functions « with domains which are
open subsets in R" such that for every point p € D, there exists a non-zero polynomial
Q of n+1 variables such that Q(x,, ..., x,, a(x;,..., %)) =0 for (x,, ..., xp)
in some neighbourhood of p. These functions are called Nash’s functions. For some
interesting remarks concerning these functions see [1].

ExAMPLE 3. Let 45 be the set of all real analytic functions of n variables with
domains which are open subsets of R".

ExAMPLE 4. Let A, be the set of all C*-functions defined in open subsets of R".

We have the locally bounded R-q.a.s. 4, Points 4, = R", top4, is the usual
topology of R" and A, has the P-d.p., h = 1,2, 3,4. It seems interesting to find
other examples of quasi-algebraic structures A, 4, « 4 = A4,, different from
Ay, Ay, Ay, A,
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PROPOSITION 2.3. If an R-q.a.s. A is a quasi-algebraic structure in R", then we
have the isomorphism

(2.2) v (0(ny), ..., v(n,)): Derd(p) > R".
Hence we have the natural isomorphism
(2.3) ‘ W (W(m), veey W(n,,)): T,4-> R",

where for any w in T,A the vector w of Der A(p) is defined by formula (1.2).

Proof. Let a€ A(p), pe UetopA and let functions ay, ..., «, belonging to
A x A satisfy the equality

n

.49 >, ) (u-m@) =0 for r,qeU.
i=1

First we will prove that

(2.5) au(p,p)=0 for i=1,..,n.

Indeed, because of dimDir, U = n there exist linearly independent directions /,, ...
..oy Iy at p of the set U. Thus there exist sequences p;;, pj;, ... and pj;, Pjz, ...,
j=1,2,...,n of points of the set U such that p;, # p,, r=1,2,..., I, = [,
as r — oo, where

Le = (Pu=PidllPp—p3l, r=1,2,..., j=1,..,n.

Setting s,, = |p,,—p;,| We have p;, = p;,+5;.1;,, 55, > 0. This yields m,( pj;,) —7i(p),)
= 55, 7(I;,). Hence, by (2.4), it follows that

Z oy (pjr’ p}r)nt(ljr) = 0.

i
According to Proposition 2.2, from the continuity of «; we get

n

Zal(pap)ni(lj)=09 j= 1,---: n.

=1
Thus we have (2.5). Now, taking any ¢ = (t,, ..., f,) € R" and « € A(p), by the

P-d.p., we can adopt the correct definition of the number f,(a) by the following
formula:

(2.6) to(2) = Y alp, P,

i=1
where «, ..., a, € (4 x A)(p, p) satisfy (2.1). It is evident that t,(x+f) = £,(@)+
+t,(f) and ¢,(cx) = ct, () for «, B € A(p) and ceR. To check that ¢, is a vector
of Der A(p) we take 8 € A(p). We may assume that

@) BOY~B@) = D Air, @) (m()— ()
for r, g € U, where U = Dy. Thus, forr,qe U
@) =A@ = ) (1, DO+, Da(@)) (ml)=m()).
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Hence

t,(2f) = Y (2P D) +Bu, D)@t = B(D)1(2) +2(p)1,(B).-
i
Assuming t, = 0, we get t,(%) =0, j=1,...,n On the other hand,

7y(r) = mi(q) = Z 8:; (u(r)—n(q)).
i
Hence it follows that
0=tp(nj)=26,jt,=t_,, j= 1,.--,”.
T

Hence ¢t = 0. Thus we obtain the monomorphism
(2.8) t—1,: R"— DerA(p).

To prove that this monomorphism is an isomorphism let us take any vector v
Der A(p). Setting t = (v(x,), ..., v(7,)), we get

(@) = O wlp, o) for aeA(p).

7
On the other hand,

a(@)-a(p) = ) alg, p) (@D —-m(p) for qeU.

Thus
o(@ = ). ulp, Pim) = 1,().

Hence v = ¢,. Thus we have the mapping
v (v(m,), ..., v(7,)): Derd(p) - R”,
which is inverse to (2.8). This ends the proof.
PROPOSITION 2.4. If A is a quasi-algebraic structure in R", the topology induced

in M by top A coincides with the usual topology of M, p€ M < R", and so we have
a canonical monomorphism

Dir,M — Der A)(p)
such that the diagram

Tid
Der Aplp)——= T Ay —2

HA
2.9)

Dirp, M - R" «————DerAlp)

is commutative.
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Proof. Let | be any direction of M at p. Then there exist two sequences, p,, p,, ...
and pi, p3, ..., of points of M tending to p, pi # px, k = 1,2, ..., such that i,
= (pe—p/lp—pil = 1 as k — 0. Setting sy = |p—pi| we have p, = p,+ sk,
where 0 < 5, = 0, as k — c0. Let & € 4y(p). Then there exist a function e 4
and a set U open in topology induced in M by top 4, satisfying the conditions p € U
c D,nDy and a|U = B|U. Every open set in this topology is, by hypothesis, open
in the usual topology of M treated as a subspace of R®. So we may assume that
P, P €U, k =1,2, ... Therefore a(p) = (p.) and a(p,) = B(py) for all k. By
P-d.p. we have (2.7) for g, r € V, where p € V' € topA. We may assume that MnV
< U. Thus

(a(Pk)- a(PD)/]Pk—PU = z ﬁt(Pk N pl’c) () - Z B.(p, pym,(I)
i 7

as k — co. We then have the correct definition of f,,(cz) by the equality i,,(a:) = I(B).
It is easy to check that /, is a vector of Der A(p). We remark that, if /;, ..., /,, | are

directions of M atp, ¢,, ...,c,e Rand I = ¢, I, + ... +c¢.l,, then for any o € Ay(p)
we have

(@ = LB) = D fulp, mD),
i

(@) = hp(®) = ) Bulp.DYm(E),

and

(Z Chirw)(“) = Z Cn Z Bi«(p, p)7,(hy)

= Y B, (D enhy) = Zﬂ:(p,p)na(l) Yoy
i h

Thus [, = Y ¢4l,,. Then there exists exactly one linear extension of the function
h

- ?,, to Dir, M. This extension will be written in the form

(2.10) I—1,: Dir,M — DerAy(p).
m

Assuming 7,, = 0 where / is in Dir, M, we have [ = Z cyly where I, ..., I, are
A=l

directions of M at p and form a basis of Dir, M. Thus

0= ip(nl) = Zchihp(nl) and I;p(ﬂt) = Z Oymy(ly) = AAR
h J

Hence
0= Zc,,n,(l,,) = n,(Zc,,I.), i=1,..,n.
h A

Hence it follows that / = 0. And we have monomorphism (2.10).
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To check that diagram (2.9) is commutative we take any direction / of M at p.
Then l, is a vector of DerA4y(p). Hence there exists an uwin T, A4, for which
I, = u o ASP), o AY,. According to Proposition 1.1 we have

v=uoAR o AL, oidh = I, oid¥, where v = (T,idy)w).
Applying, by Proposition 2.3, isomorphism (3), we get
(@), -.n () = (p(id3 (D)), ..., LN ED)) = (L), .., ) = 1.

Hence it follows that diagram (2.9) is commutative. This ends the proof.

3. (4, m)-smooth representability of sets
Let A be a quasi-algebraic structure in R". A subset M of R" will be called (4, m)-

smooth representable iff for any p e M there exist functions F,,...,F,eAxd

and a neighbourhood B of p open in top 4, such that for exactly one function f
we have

(a) Dy « R™ and f[Dy] = B;
(b) for any u € Dy, («(4), f(W)) © De,n ... "D and

F(e(w), f) = f(),
where t(uy, ..., Up) = (Uy, ..., 4m, 0, ..., 0) for (uy, ..., uy) eR™ and F(r)
= (F.i(1), ..., F,(). ,
THEOREM. If A is a quasi-algebraic structure in R", top A coincides with the

usual topology of R" and M is such a subset of R" that dimT, Ay = m at any point
pof M, then M is (A, m)-smooth representable.

Proof. Let pe M and ¢ denote the composition of the monomorphism
Tpidy: T,Ay — T, A and, by Proposition 2.3, of isomorphism (2.3). Then we have
the commutative square

TPAM -‘Rn

4

A idMl l ,‘p
A etk DerAlp)

Let z,, ..., z, be an orthonormal basis of Imgp. We take vectors zj, ..., z, such
that @(z;) = z,, h =1, ..., m. They are linearly independent. We complete the
basis z,, ..., z, to the orthonormal basis z,, ...,z, of R?, and we set ¥x(q)
= zi(q—p) for g e R". From the fact that the canonical projections 7;: R" — R
belongto 4,i =1, ..., n, it follows that y,, ..., y, € 4. We have y,(p) = 0. We set
& = ARp(ye 0idy) and wy, = A6, k =1, ...,n. Thus, see diagram (1.3),

z(@0) = 2 (A3 (A%, (4% )) = 2 (Tridu (4 (450))))
= (z5° T; idy) (A: (Ag(n))) = (T,idy) (Z;n) (A%Z)(A ,?(Vu)))
= ((Tid) @) = (PE)0) = 2,
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where for any ¢ in R" the vector ¢, of DerA(p) has been defined by formula (2.6).
We have

N —-1(@) = 20-9) = Y (@ -m@)(ze) for gq,reR,
[]
where ¢; = (&, ..., 6;y). Thus
Zno (V) = Z (zie) (zne) = Oy
i

Hence zy(wi) = 6, B =1,...,m; k =1, ..., n. We then have linearly independent
vectors @y, ..., wn of Ty Ay. On the other hand, dimT:AM = dimT, 4y = m.
Therefore w, , ..., wy, is a basis of T, Ay . Thus, for some real numbers a,;, we have

m
5}=Zah1mh, j=m+],...,n.

A=
This yields
m m
ADE = D ay AR 6 = AR (Zah, &).
A=l =
Hence there exist u,;,v,;, ..., tsj, ¥s; in A%(p) such that
m 5
51:;,21ah15h+ Z,u,_,v,_,, j=m+1,...,n.
- <

Hence it follows that

5

m" N , ’
Aglp('}’JIM) = Z ahJAl?lp(}’nlM) + Z A%,(d:j)Ag;p(ﬂu).
=1

h=1
where a;;, fy; € A% (p). Hence

m ;
A M) = A%y (D M+ D i),
h=1 =1

Thus there exist functions oy, ;€ A°(p) and U etopAd, such that pe U
c r') (Dq,,nDg,)) and
t

3. vlU = ('; QyyYnt+ Z auﬂu)

We have U= MnV, where Vetopd and D, ,» Dp,, €topA. Thus there exists
an ro > 0 such that

U, j=m+1,..,n.

B™(p;ro) = () () (Dg, N Dp )V

t=1j>m
Then MnB"(p; ro) = U. By Proposition 2.2 the functions «,;, f;; are locally Lipschit-
zian. Hence there exist L > 0 and r, € (0; ro) such that |o;(g)— (1) < Lig—g,]
and |6,,(q)—B(90) < Lig—q,| for g, q, € B"(p; ry). We have x(p) = B,;(p) = 0.
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Thus there exists an r, € (0; r,) such that |x,;(g)| < ¢and |8,;(g)| < efor g € B*(p; r,),
where & = 1/(3Ls(n—m)). Setting
s
M) = > ay@Bya) for geB(p;ry,
1=1
we get 4; € 4 and

-

[A(@)— Ag)l <

Hence

(3.2) 1A(9)—2,(qy)] < Em—i@-lq—qil for gq,q,€B"(p;r,).

Let us set for x = (x,;, ..., x,) € R" and g € B"(p; r,)

'E n
F(x,q)=p+ Xxlzi"’ Z (
i=1 1

J=m+

(lae(@) — ey (@118 + 1B 1(@) — B (@)1t (@)1

-
]
-

m

auxg + RJ(Q))ZJ.
1

From the fact that =,, ..., 7, belong to 4 and that B"(p; r,) € top A it follows that
Fy, ..., F, defined by the equality

(33) F(x,9)=F(x,q9e;+ ... +F,(x,q9)e, for xeR"and q€ B(p;r,)

belong to Ax A. Here e, ..., e, form the standard basis of R".

We have Img c R". Setting H = p+Ime¢, by Proposition 2.4, we get the
hyperplane H containing p and all points p+/, where / is any direction of M at p.
Thus there exist 7 € (0; r,) (see [7]) and a function g satisfying the following con-
ditions:

(i) the domain D, of g is contained in H and g is uniformly continuous in D,;

(i) g[Dg] = MnB"(p;1);

(iii) for any g € D, the point g is the orthogonal projection of g(g) onto the
hyperplane H.

Now let us take the isometry & of R” onto R" which sends 0, ey, ..., e, into
p,P+zy,...,p+z,, respectively. Setting f=gohot, where (: R™" - R" and
Uy, ostiy) = (Uy, ..., U, 0,...,0) for (u,, ..., un) € R™, we have the mapping f
with the following properties:

(iv) Dy ¢ B™(0; r) and f is uniformly continuous in Dy,

() fIDs] = MnB(p; r).

Consider any u = (uy, ..., 4,) € D;. Then we have

h() = p+uzy+ ... +unzueDy, and f(u) = g(h(1())) € U.
Hence, by (3.1), we have
v (J@)) = zau?: (S@))+ Z a(fE)BAS@)), J=m+1,..,n
/=T

tal
From the definition of y; we obtain in turn
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v (g(@) = 2.(g(@—p) = 2(g—p) for geD,, i=1,...,m,
Vt(f(“)) = Zl(h(‘(“))“l’) = Uy,

v, (f(w)) = Zauu,+)l,(f(u)), = m+1,..,n,

S(w) =p+ Z?u(f(u) p)z=p+ Z“tzﬁ' Z (zau“l"';u(f(")))zj-

k=1 J=m+1 i=1
Hence, by the definition of the function F, we get the formula

3.9 Sf) = F(«(w), f(w)) for wuebD,.
From inequality (3.2), for x € R and g, g, € B"(p; r,), we get

Fx, )= F(x, gl < ) 1@ =A@ < Flg—a4l.

J=m4+1

Remark that F(:(0), p) = p and for u € R™

F(u(w),p) = p+ Zlu,z,+ Z (Z“U"t)

J=m+1 i=1
Thus there exists an r’ € (0; r) such that |F(«(w), p)—p| < r/4 for u € B™(0;r). This
yields the inequality
sup||F(c(w), p)—p|; ueB"(0; r} < r/3.

Hence it follows (see [4], p. 190) that, for every u € B™(0; r'), f(u) is the unique
point g € B"(p; r) such that F(i(4), ¢) = g. Hence f is a local (4, m)-smooth rep-
resentation of the set M at the point p. This ends the proof.

As corollaries of the theorem proved above we obtain the results of papers

{6] and [7]. It suffices to take as the R-quasi-algebraic structures the R-q.a.s.’s A4,
and 4, from Examples 3 and 4, respectively.
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