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On a class of initial-boundary value problems
in a domain with boundary containing isolated points

by H. MarcINKOWSKA (Wroctaw)

Abstract. Let us consider a strongly elliptic linear differential operator P(x, D) of order
2m defined in the domain £ = Q\{0}, where 2 is a bounded domain of R, containing the
origin. The paper deals with the initial-boundary value problem for the equation P(x, D)u+
+DXu = f(x,t) with initial conditions uj_, = @,, D,ul,—o = ¢, and boundary condition
u(-,0)e H,(Q) for t > 0. Here f, ¢, are in L, and ¢, satisfies some regularity assumptions
together with the boundary condition. It is proved that the latter yields an asymptotic
formula for x — 0, which generalizes in a way the well-known Sobolev inequality. The
problem is solved by the Fourier method, which gives a distributional solution satis(ying
the energy inequality.

The present paper is devoted to the study of the initial-boundary value
problem for the linear equation of the form

(1) P(x,D)u+D?u = f(x, 1),

where P is a strongly elliptic operator of order 2m with variable coeflicients.
Equation (1) is considered in the cylindrical domain 2, = £ x(0, ). Here
Q = (\{0}, where @ denotes a bounded domain of R, containing the origin.
As the boundary 02 has a portion of codimension n > 1, we are dealing
with an example of the boundary value problem of the so called Sobolev
type. A problem of this kind has been first introduced by S.L. Sobolev
(see [9]), who considered the polyharmonic equation in a domain of R,,
whose boundary contained a finite number of disjoint surfaces of codimension
greater than one. Later on B. Yu. Sternin [10] considered similar problems
for general elliptic and parabolic (in the sense of Petrovskii) operators. The
present paper is a first step towards considering problems of Sobolev type
for equations of form (1). This class contains, in particular, some equations
occurring in the classical problems of physics, as the wave equation or the
equation of a vibrating plate.

Our method is different from those used by Sternin [7]. Namely, we
solve the initial-boundary value problem by means of the Fourier method.
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Therefore we are dealing at first with the corresponding elliptic boundary
value problem, which will be posed in terms of the Dirichlet bilinear form,
in the so-called variational formulation (see [1], [2], [4]). The boundary
condition is defined by the requirement that the solution has to belong to
the closure H,, (2) of CZ(R) in the Sobolev space H, (). It is well known
that in the case of a domain with smooth boundary the assumption
we H, () is equivalent to that of vanishing of all D*wle with || < m,
where the boundary value is understood in the sense of trace (see [5]-[7]).
In our case the situation is quite different, because the boundary of the
domain under consideration is not a smooth manifold. It will be proved
in Section 3 that the condition we f{,,,(ﬂ) yields an asymptotic formula for
the function w as x — 0. Obviously, our results may be easily extended to

the case where the irregular part of 0Q consists of a finite number of
isolated points.

1. The spectral properties of the elliptic boundary-value problem. In this
section we give an outline of the properties of elliptic boundary value
problems, which will be used in the sequel. To begin with, let @ be an
arbitrary domain of R,, V a closed subspace of H,,(£2) satisfying the condition

2) C3 @<=V H,(Q

and B a bilinear form over V continuous in the topology of H,(£2). We
shall use in the sequel the notation

B/‘.("')= B(!)+i(a)

for arbitrary complex number 4; (-, -) will allways denote the scalar product
mn L,(2). By FI,,,(Q) we shall denote the closure of CJ(f2) in H,(2). If
X, Y are two Hilbert spaces, then .# (X, Y) will denote the set of all linear
and continuous operators from X into Y. The derivation will be understood
in the weak (distributional) sense. We say that (see [1], [7])

1° B is coercive in V if there exist constants i, = 0 and ¢ > 0 such
that

Re B(v, )+ 40(v,0) = clivlln  (xeV);
2 a function weV is a solution of the problem (V; ,) with given
geL,(2) and complex number 4, if
B;_(W, U) = (91 U)
holds identically for ve V:

¥ i is an eigenvalue of (V;.,) if the problem (V,,) has non-vanishing
solutions; these solutions are called eigenfunctions of (V;,) corresponding
to the eigenvalue A.

Our further considerations will be based on the .following well-known
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THEOREM A. Suppose that
(@) the form B is coercive and hermitian in V ,

(b) the set of all solutions of the problem (V, ,), where g runs over
L, () is dense in L,(R);

(c) the embedding V < L,(Q) is completely continuous.
Then

1° there exists a solution operator S€ ¥ (L,(R), V) such that
3) B,,(S9,v) =(g,v) (veV)
for arbitrary given ge L, (9),

2 the problem (V.,) has a contable set of real eigenvalues {A}2,
satisfying the conditions

4) A<i *k=12.)
and
(5) klim ‘1,, = —o0;

3 there exists a sequence of eigenfunctions {w,} ., which forms an
orthonormal basis in L, ().

For the convenience of the reader we give an outline of the proof.
It follows from (a) that the form B, is a scalar product over V' inducing
a norm equivalent to the usual Sobolev norm | |,. According to the Riesz
theorem, the linear functional

Vav-(q,0)

may be represented by means of B; . This yields assertion 1°. According
to assumption (c), the operator S considered as a member of £ (L,(Q),
L,(R)) is completely continuous. It can be shown without difticulty that
if is self-adjoint in L,(2) and that the problem (V;,) is equivalent to
the equation

6) w+uSw =0

with u = A—4,. Assertions Z and 3 now follow from the well-known
properties of a completely continuous operator in a Hilbert space.

According to Theorem A every function ge L,(f2) can be developed
into its Fourier series

(7) g= k; @, W) we,

convergence being meant in the L,(£)-norm.
We now prove
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THEOREM 1. Suppose that the assumptions of Theorem A are fulfilled and
that ge Im S. Then the development (7) remains true with convergence in H, (L2).

Proof. It is easy to verify that S is invertible, because Sg, = Sg, yields
(gl9 U) = (929 v)

identically for ve C3(Q). Thus S™' is- well defined on ImS. For any
gi,9,€ImS let us put hy = S7'g; (j = 1,2). Then

(8) Bio(gy,v) = (hy,v) (veEV)
and

9 B,,(v,92) = (v, hy) (EV).
Putting v = g, in (8) and v = g, in (9) we get
(10) (791,92 = (9:. 57 '9,).

We have proved that S™! is symmetric.
According to (7) we have

(S—lg9 g) = hgl (S_lg, Wk)(ga Wk);

hence it follows from (10) and (6) that

(11) (§'g,9) = —kzl wlg, wl> (e = A= 2o)
for each geIm S. Let us denote
14
rp =g— 'Zl (g’ wj)wj'
i<

We have to prove that |r,[,, » 0 as p = oo. .Obvioﬁsly r,€Im §; Thus (10)
with g,, g, replaced by r, yields

(12) (S_1 Tps rp) = _kgl Hy |(rp! Wk)lz'

But a simple calculation shows that

0 for k=1,...,p.

Tps W) =
5> ) {(g,wk) for k = p+1, ...,

and so (12) gives
(13) (S_lr‘nrp) = = Z :u‘kl(ga Wk)lz‘
k=p+1

As the series on the right of (11) converges, the right-hand side of (13) tends
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to zero as p —» o and so does (S”'r,,r,). But, according to the definition
of the operator S and the coercivity of B, we obtain

(S r,, 1) = clir,ll?
and this completes the proof.
From now on we shall suppose that the elliptic part of (1) is given
in the divergent form
(14) P(x,D)= Y (=D)"D'az(x)D* (xeQ).

f2l,1Bl <m
Till the end of this section B will be the corresponding Dirichlet bilinear
form:

B(w,v) = | ”§< (ap D’ w, D*v)  (w,veH,(Q)

and the subspace V will be equal to H,,(Q).

We now prove the following

THEOREM 2. Suppose that:

(a;) @ = {0}, where Q is a bounded domain of R, having the segment
property and containing the origin;

(a,) P is strongly elliptic in Q and formally selfadjoint;

(a3) a,5(') are continuous in Q@ for |a| = |f| = m and bounded for
lof + 1B < 2m; ’

(ay) P(x,D)pe L,(2) for peC5(Q).

Then the assertions of Theorem A are satisfied.

Proof. It suflices to show that the assumptions of Theorem A are
satisfied in our case.

It remains to prove (b). Using (a,), (a,) we obtain for ¢,veCq (R2)
yields the coercivity of B. It follows also from (a,) that a,; = ag,; therefore
B is hermitian and so assumption (a) is verified. The space H,(Q) is
contained in H, (Q); therefore, according to Rellich’s theorem (see [1]), we
have (c).

It remains to prove (b). Using (a,;), (a,) we obtain for ¢,veCg (Q)

(P(x, D)o, ) = B(p,v)

and passing to the limit in the Sobolev norm | {,, we obtain the last
equality for any ve H,(£2). Therefore
(15) B; (9, v) = (h,v) (veH,(RQ),

where h = P(x, D)@+ A, ¢. This means that each ¢ € CJ (£2) is a solution
of (V,,x) with suitably defined he L,(€2), and so condition (b) is proved.
As a corollary we obtain

(') Obviously, a.5 € Hmax gal, 151 (@) is sufficient for (a,) to hold.
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THEOREM 3. Assume (a,;)Ha,) and suppose that a function geI:I,,,(Q)
satisfies regularity condition

(16) P(x,D)ge L,(9).

Then the development (7) holds true with convergence in H,_ ().

The proof follows immediately from the two precedings theorems if we
note that (15) holds with ¢ replaced by g and therefore ge Im §.

2. A generalization of Sobolev’s inequality. Let = be a domain in the

unit sphere of R,. For fixed xeR, and real numbers 0 <r < é we
introduce the following notation:

Fy(x,%) = {xeR,: x = x+s¢, where (£€Z,0 <s < &},
I :(x,8) = {xelyx,5): s>r}.
For an arbitrary domain © in R, we shall now denote by || |, the norm
in the Sobolev space H,(2). By do, we shall mean the surface measure
on the unit sphere. We say that a point xeQ has the cone property if

there exist & and £ such that I';(x.E) c Q. For simplicity we shall write
in the sequel I'; or I, ;, omitting the arguments x, =.

PROPOSITION 1. Let Q be a domain in R, and let xe€Q be a point
having the cone property. Let ue C™(I';) ~ H,,(£2), where

(17) 1 <m< in.
Then there exist positive constants c;, rs (not depending on u) such that
(18) "'flu(x+r¢)lzd0= cs lullar, ,

for 0 <r <,
Proof. We use the Taylor formula in the form

"o r=sy (m)
(19) fm=3% o) +— I("—f)"' S™(r)dr
j=0 J! (m 1)'

O<r<s<yd

with f(r) = g(r)u(x+r¢), where ge C™(0,5). Applying the Schwarz in-
equalities we get from (19)

J
(20) g u(x+rd? < ¢y ; Z g¥s)? |D* u (% +s&)P +

k=0 l2l=j—k

é
() Y [IDPu(x+tE)? 1 dr),

l2l=m-k r

*+
NGl

where

@1 &) = [ 31 g o ds.
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For fixed pe(4n—1, 4n) let us write

22) 9(r) = r;
then
(23) dk(r) = [P(P*l)..(l"k+1)]z (52(m+p—h)—nq__r2(m+p—k)—n).

2(m+p—k)—n

It follows from (17) that p > m—1; thus all the derivatives g% (k = 0,
1,...,m—1) are bounded in the interval (0,d). Moreover, we have the
estimates

[P(P“l) (p_k+ 1)]2 62(",4.?_;()_,,
2m+p—k)—n

0 < dy(r) < k=0,1,..,m—1)

and

(=1 ...(-m+ L} , _
r

0<d,(r) <
n—2p

b

which together with (20) yield
24) PG+l <o X ID'uE+sOP+ Y L, O)+rP "I (r, 0),

[2)<m 1</a|<m
where
)

L(r, &) = [|IDFux+1OP " tde (0 < |of < m).

r

Let us integrate both sides of (24) over the cone I', ;. We have

] é
§ L= [fs" fID"u@E+78)P " " drdsdo,
rr.ﬂ r r

and this identity yields, after interchanging the integrals,

(25) [ L<& [ D>
I'ys I.s
Moreover,
o 2 5’._’” o 2
(26) [ luEx+rdP? = - [ lu(x+r)? do,,
I'r_5 o)

and for 0 < r < r; = §(2)" " we have
"
2n’

therefore integrating (24) over I', ; and using (25){27) we obtain the estimate

@7) Le-rms>
n

r2P I lu(x+rd) do; < c3(||u||,f,_r"6+rz"_" Ilullé,r,.,) 0 <r<ry,

which yields (18).

2 — Annales Pol. Mathematici XL. 2
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Remark. If ue C™(I’;) and m > } w, then (18) follows immediately from
the well-known inequality due to Sobolev (see [1], [9]):

(28) sup |u(x)| < const |[u]l,r,-

vel ,
ProPOSITION 2. Under the suppositions of Proposition 1 the inequality

(29 sup (1" | lufx +rE)2de Y12 < esliul,y,
rot 1< e rg.
holds for every roy > 0 and ue H, () (with c; not depending on u,r,).
Proof. As the cone I ro.0 Das obviously the segment property, there
exists a sequence {u,} = C*(R,) tending to u in H,(I, ,). The left-hand
side of (29) defires a norm in the space of continuous functions in

I'yorss Which we denecte by |l ... For smooth » inequality (29) follows
immediately from (18}, therefore

(30) iu'-lro.ré sc ”u\'”m,r,o_‘; .

It remains 1o prove that one may pass to the !imit in (30).

It follows from (29) applied to the function w, —u, that {4} is 2 Cauchy
sequence in the norm [ |, rgs @ and so it has a limit & belonging to the
completion of the set C *’(I‘ r0',‘5) in the norm | lrg.rp- To identily & and
ulrro,'a, it suflicies to show that the two nnrms under consideration are
compatible on I, . in other words: if |ui, ., » 0 and {u,} is a Cauchy
sequence in the norm | ”m,f.o,.s’ then ”“"“m-frc.rﬁ - 0 as v > 20. The iast
statement follows immediately from the following

LeMMA . Convergence in the norm | |, .. is strongcer than convergesnce

WS
in the space <'(I', ).
Proof of the lernma After introducing the spherical coordinates we

have for fixed ¢ €2 (I, ,;) and continuous u

Gy | f «;o(x)u(x)dx (s=ro) sup | [ @(&+re)uls+re)dog.

’0"6 ro ~r\r5

Applying to the right-hand side of (31) the Schwarz inequality we get

| § eux)dx] < 5 rg @l g,y
"0"5

and this ends the proof.
For given X, Z let us denote by M, (u; X) the mean value of the function

|uj> over the intersection of the sphere with centre at x and radius r with
the cone I';(x, Z). Obviously,

M, (u; %) = B]7! [ Ju(x +rd) day,

where |Z| is the measure of the set £. We now prove
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ProposiTION 3. Suppose that

(a) X€ Q has the cone property;

(b) ue H,,(2) with m < in;

(c) there exists a sequence {u,} = H, () such that for each v the function
u, vanishes in a neighbourhood of x and

lim lu—it o = 0.

v=20

Then
(32) lim "M, (u; x) = 0.

r—0+
Proof. It follows from (29) applied to the difference u--u, that
for v > v(g)
(33) sup (" § lu(X+ré)- u, (k+ré)Pdo)? < /2,
0<r<rg =
where & i1s an arbitrary given positive number. Let us choose #!' so small
that the function u, (x) vanishes if |x—x| < n(e), xc 5. Then {33) gives

r{lu(x+rdlfde. <& for r < n(e).

Let us now suppose that Q satisfies assumption (a,) of Theorem 2.
On the smooth parties of 6@ every function uefi,,,(Q) vanishes together
with all the derivatives D*u (o] < m—1), if the boundary value is under-
stood in the sense of trace. As we have supposed that Q has only the
segment property, in general case we have the following

THEOREM 4. Let us suppose that the point x € 02 has the cone property
(in particular, this assumption isosatisﬁed by the origin if Z is the whole
unit sphere). Then for every ue H,(Q) we have
(34) lim D"u(x) =0 (ja| < m—1}n)

X—=Xx

-xef 5

and

(35) lig]+ r"M,(D’u; X) =0 (max(0,m—1%in) < |of < m—1).

The proof is evident in view of the Sobolev inequality (28) and our
Proposition 3. Let us note that, according to Sobolev’s lemma, all the
derivatives occurring in (34) are continuous in a neighbourhood of the
origin and in the whole of Q, if Q@ has the cone property.

3. Energy inequality. In this section 2 will be an arbitrary domain of
R,,V a subspace of the Sobolev space H, (€2) satisfying (2) and B a con-
tinuous bilinear form over V. Let X be an arbitrary linear normed space
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and g, h two X-valued functions of the real variable, defined in an interval
(o, f). We say that

1° h is the strong X-derivative of g at the point t, € (x, f) if

(36) lim

gto+1)—g(to)
=0 T

—h(t)| =0;

X

2 g is of class C'((a, f); X) (0 < r < o0) if it has at each point
to€(a, f) the strong X-derivatives up to order r, which are continuous
X-valued functions.

Obviously, we may replace in 1°, 2 an open interval («, f) by a half-
closed [«, ) — in such a case, for t, = « we consider only the right-hand
derivative (t > 0 in formula (36)).

We will prove the following

THEOREM 5. Let u be a V-valued function of class C!([0, ); V)n
N C*([0, ©0); L, () satisfying the identity

(37) B(u(t), v)+(DZu(r),v) = (f(t),v) @eV,tel0, ),

where f is a continuous L,(Q)-valued function. Suppose that B is hermitian
and coercive in V. Then for every T > 0 there exists a positive constant
cr (not depending on u) such that

<1<

s

(38) 0supT(Ilu(t)ll,f.+Ih').u(t)llﬁ) < Cr(llu(O)II.f.+IID.U(O)II%-F(I) ILf @)li3de).

‘The proof runs in a standard way (see [11] for m = 2). At first we
give some lemmas, which will be needed in the proof.

LEMMA 2. Let b be a bilinear form continuous over X and let
g; G =1,2) be of class C'([«, B); X). Then the function

[a, B)et — b(g, (1), 92 (1)
is of class C! and
(39 D,b(g,,9,) = b(D,9,,9,)+bl(g,, D,g,).

The proof follows immediately from the following decomposition of the
difference quotient:

1
(40) " (b 91,92 +n—b(gs, gz)h)

_ b(g,(t+h})l—gl(z) it +h)) N b(gl 0, gz(r+hz—gz(r) )

Passing to the limit with h - 0 we obtain (39). Identity (39) yields the
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following formula of “integration by parts”, valid under the assumptions
of Lemma 4:

(41) §b(D,gy,95)dt = —[b(gy, Dgr)dt+b(g,, 9:)iZ5-

LemMa 3. If we X and ze C'([a, B)), then the function
[a,f)3t z(t)w
is of class C'([«, f); X) and
Diw)=z9w (i=1,..,r).

Lemma 4. C'([«, B); X) is a linear space over the field of complex
numbers.

The proofs may be left to the reader.
We need also the following elementary

LEMMA 5. Let F be a real-valued function of class C'(0, T) satisfying
the inequality

(42) F()<uF@)+y O<t<T;uy>0)
and the initial condition
(43) F(0) = 0.
Then
(44) sup F'(t) < y(e"T+1).
0<i<T

To prove this lemma, we introduce the function

G(t) = F(t)e ™.
Then (42) yields

(45) G(<ye™ O<t<T).
Integrating (40) we obtain
GOy < v/m
and thus
(46) Fity<ye/u (O <t<T).

Inequalities (42) and (46) give (44).
Proof of Theorem S. Putting v = D,u in identity (37), we pget for
fixed T> 0

T T T T
47) [ Biy(u, Duydt— 2 § (u, D,wydt f [(D?u, D,u)dt = {(f(t), D,u)dt,
0 0 0 0



126 H. Marcinkowska

where
B; (w,v) = B(w,v)+ A(w, ).

Using formula (41), we obtain

T T
[ (u, Dywyde = —[ (D,u, upde+(u, u)iZ§;
a 0

thus

48) Re [ (u, Dyu)de = § w35,
Similarly, '

(49) Re(ft(D.zu, D,u)dt = } |ID,u(0)ll3liZs-

Using formula (41) once more, we have

T T
b‘- B, (u, D,u)dt = —b[ B, (D u,u)dt+B, (u, u);Zg

and thus
T
(50) Re | Bi,(u, D,updt = 4 B, (u, uiZ5.
0
According to (48), (49), (50), we get from (47) the identity

T

(51) [B, (u, u)—2o ullg+ 11D, ul3li=g = 2Re [ (f(2), D,u)dr.
. 0

We now introduce the energy integral

J2(t) = B (u(t), u(0)+ D, u ()l
Then (51) may be written, with T replaced by ¢, in the form

(52)  J (O~ = Ao [lu(®Ii— 20 [u©)|3+2Re 6f(f(f), D, u)dr.

According to Lemma 2, both sides of (52) are continuously differentiable
with respect to t, and so we get

(53) J()J'(t) = A, Re (u, D,u)+Re (f, D, u).

We apply to the right-hand side of (53) the Schwarz inequality. Supposing
for a moment that J(f) # 0 and using the obvious estimate

1D, u®)lo < IJ (),
we get from (53)

(54) (0 < Ao lu(@llo +11/ (Do-
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As

t

M) < [ @)idt+0),

0
we obtain from (60)

(55) V0 < 4o f lu@lodr+ [ I f (D)llode+1J (O)f;
0 0

evidently, (55) is satisfied in the case J(t) = 0, as well.
It follows from the coercivity of the form B that the function J may
be estimated from below:

(56) JE() 2 cllu(@)s+ 1D u)3.

Suppose now that te[0, T], where T is a fixed positive number. Then
estimates (56) and (55) in a slightly different form (after applying the
Schwarz inequalities for sums and for integrals and using the continuity of
B) yield (42), where

F(t) = bf(c lu(@)lizm+ 1D u(7)g)de

and
T
y = 3T CI) If ®lde+cy [|u(O)2+311D,u(0)i|3

(here ¢, is a positive constant not depending on u and u = 3TA3c™}).
Our theorem follows now immediately from Lemma 5.

4. Initial-boundary value problem. From now on we put V= H, () and
Qr = Qx(0, T) with Q being a domain of R, and T a positive number.
B(-,-) will be the bilinear Dirichlet form corresponding to P{(x, D) given
in the divergent form (14).

We are now going to solve equation (1) in the domain Q_ with the
boundary condition

(57 u(-,)eH (@) ©O<t< o)
and the initial conditions

(58) u(x,0 = @o(x) (xeQ),
(59) D,u(x,0) = ¢,(x).

We suppose that assumptions (a;)—(a,) of Theorem 2 are fulfilled. As
regards the data, we suppose that:

(as) @o€ H,(R), P(x, D) poe L, (R);
(ag) @€ L, (),
(a;) f defines the continuous function [0, )t f (-, t)e L, (R).
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Let {w,}>, be the complete orthonormal system of eigenfunctions of
the problem (V,,) (according to Theorems A and 2, such a system does
exist). Then for fixed ¢ the function f(-,t) may be developed in L, (L)
into its Fourier series

a0

(60) f(x,t) = ;1 w(x}h (1) (0O <t < o)
with

(61) h () = (e, (-, 1).

We seek a solution in the form

(62) u(x, 1) = Y w(x)z/(0),

where z, satisfy the ordinary differential equations
(63) =Mz =h(@) (k=1,2,...; te[0, o))
and 4, denote the cigenvalues corresponding to w,.

We shall need in the sequel the following
LEMMA 6. For any fe L,(S2r) the development (60) converges in L, (827).

Proof. Obviously, for almost all ¢t > 0 we have

(64) 11015 = kZl [ ()

and the left-hand side of (64) is integrable in (0, T). But
j T

(65) | /- kzl Wi hk”zz(ar) = i‘;cj(t) d,

where

a

c;(t) = ) Z | ()1

=j+1

According to (65), we have
0<¢;(0) < If(0l3s

thus one may pass to the limit under the integral sign in (65). This completes
the proof.

It follows from our assumptions (a,)}{a¢) and from Theorem 3 that
the initial data may be developed as follows:

(66) Po = kzl QG Wy
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(with convergence in H, () and
(67) @y = kzl by wy

(convergence in L,(£2)). This yields the initial conditions
(68) %(0) = a,, z(0) = b,

provided we are able to differentiate series (62) term by term.

We can now prove two theorems about the initial-boundary value
problem for equation (1). All the derivations are understood in the weak
(distributional) sense.

THEOREM 6. Under assumptions (a,}Ha,) the function u defined by series
(62) satisfies (1) in the domain Q_ and has the following properties:

(i) the H,,()-valued function t u(-,t) is continuous in [0, 0);

(i) the L, (R)-valued function t\— D,u(-,t) is continuous in (0, ©);

(ii)) u(-, 0) = @o;

@) Hm 1D,u(:, =04 le = 0;

(v) for each T> 0 the energy inequality

(69) Sup (I (-, OIZ+IDul -, DIIF) < crlli@olla+ oz + I fIZ, @)
holds with a positive constant cy not depending on ¢; (j = 1,2), f,u;

(vi) the derivatives Diu (0 < |x] < m) and D,u may be computed by
differentiating series (48) term by term; the series of derivatives does converge
in L,(2) uniformly with respect to te[0, T] for arbitrarily fixed T> 0.

Proof. Obviously, the functions h, defined by (61) are continuous in
the interval [0, oco]. Therefore for each k = 1, 2, ... the function z, is well
defined as the solution of (63) satisfying (68) and is of class C2([0, o).
Let us denote by u; (or ¢@q;, @,;, f;) the sum of the first j terms of
series (62) (or (66), (67), (60), respectively). It follows from Lemmas 5 and
6 that the functions ¢t u;(-,t) and .t b u;(-, t)—u (-, t) satisfy for each
j,k the assumptions of Theorem 5 with f replaced by f; or f;—f,
respectively. According to (66)—(68), the initial conditions

(70) Ui (+,0) = @ ;
and
(71) D,u;(+,0) = ¢, ;

are satisfied. Thus it follows from the energy inequality (69) that {u;} is
a Cauchy sequence in the norm

(72) uts ((sup_(Ju(-, IA+IDu(-, 9IF)".

O0S(S<T
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Accordingly: for arbitrarily fixed positive T there exists in [0, T] a continuous
H,(Q)valued function ¢+ u(-,t) which is the sum of series (62) with
convergence in H, (), uniform with respect to ¢. Similarly, the partial
sums of the derivated series D,u; converge to an L,(£)-valued function
u,, which is continuous in [0, T], and it is easy to verify that u, = D,u
in ;. This yields properties (i)iii) and (v), (vi).

Property (v) follows from (69) applied to the function u; if we pass
to the limit with j - o0.

In order to prove (iv), let us note that for each t,e(0, T] we have

(73)  IDyu(-, te)—@llo < “D:“('sto)—D:“j_(,',to)"o"'
+ 1D, u; (- 0)— @y llo+ 11D, u;( -, to)—Dyuy( -, 0)llo.

Fix j = j, such that each of the first two members on the right-hand
side of (73) is not greater than ¢/3. Then the last member does not exceed
g/3 if ty < §; and this ends the proof of (iv).

Finally, we prove that u satisfies (1) in the distributional sense. Let us
choose arbitrarily a e CJ(R,); then ¢eCy(2;) for some T> 0. As
Theorem 5 is valid for the function u;, we get from (37), after replacing
(v) by ¢(-,t) and intcgrating with respect to t,

T
(74) £ B(uj( Sth el t)) dt+(uja sz ‘P)L;(.Q-,') = (f, (P)LZ(QT)-

It follows from our assumptions that

,1'3.1 "a,,,D’u,‘aupDﬂ“"Lz(nr) =0,

and so we may pass to the limit with j — oo in (80). This completes the
proof.

THEOREM 7. Assume conditions (a,)Ha¢) and suppose that

(as) feL,(8r) .
for each T > Q. Then the function u defined by (62) is a solution of (1)
in the domain Q, and it shares properties (i(v) of Theorem 6. The functions
z, are of class C! in [0, oo), they satisfy initial conditions (68) and equation
(63) in the distributional sense. Series (62) and the series of derivatives

aD

(75) Dyu(x,t) = 3 w(x)z(t)

do converge in L,(82;) for each T> 0.

Proof. For arbitrarily fixed T we can approximate in L,(f2;) the
function f by a sequence {F,} of continuous functions. According to
Theorem 6, applied to the mixed problem (1), (57)~(59) with f replaced
by F,, we obtain by the Fourier method a solution U, having properties
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(1(v). The difference U,— U, is a solution of the same problem; but with
vanishing initial data and with f replaced by F,—F,. Thus it follows from
(69) that {U,} is a Cauchy sequence in the norm (72). Its limit u satisfies
equation (1) and has properties (i}(v), as well.

It remains to prove that u is the sum of (62). As tb> u(,t) is
a continuous L, (£2)-valued function, it admits (for fixed t) the development
in L,(9):

@®

(76) ux, ) = Y wi(x)z(t),

k=1

where
z(t) = (Wi, u(-, 1)

are continuous in [0, T). Similarly, the L,(£2)-valued function

- {D,u in QT’
u=
@, fort =0

is continuous and may be developped in L,(2) as follows:

@®

(77) ix,) = Y wm()p(t) ©<t<T),

where
(Wi, Dyu(-,t) for0<t<T,

t) =
() {b,‘ fort=0

are continuous, too. According to Lemma 6, the two series (76), (77) do
converge in L,(2;) and it is easy to verify that p, = z;.

To complete the proof, it remains to show that z, satisfy (63). Let
us write '

Zy.s (t) = (wk’ Us( ) t))
and

hes(®) = (We, F, (-, 0)).
Then z,, is a smooth solution of the equation
(78) Zhs— Ak Zhs = s ().

As for fixed k we have
lim sup |z,,(t)—z () = 0

S ® o< ¢<T
and

lim "hk,s_hk"Lz(o,T) =0,
s> ®

we may pass to the limit with s — oo in equation (78), obtaining (63).
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