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1. Introduction. We prove that for certain symmetric Bernoulli
convolutions x on the circle there is a countable subgroup D(u) such
that translates of (not necessarily distinct) powers of u are mutually
singular unless the translating elements are equivalent modulo D(u).
As a simple special case we mention the Cantor measure

© 1
po = % 5 (8(0)+8(37),

which has the property that 6(x)*u® | 6(y)*u unless m = n and x—y
is a triadic rational. In general, D(u) will be the subgroup generated by
the successive mesh divisions in the construction of u.

The problem arose as an offshoot of a detailed study [2] of L-subal-
gebras of M (T) associated with Bernoulli convolutions u, where, in many
cases, we required to establish the mutual power independence of x and .

(u denotes the involute defined by u(E) = u(— E) for Borel sets E, and
we say that u, u have mutually independent powers when u®u?non | u"
implies p = r, ¢ = s.) This property appears as a corollary of our methods
and is also established for some measures which were introduced by
Kaufman in [5].

Our results are very elementary to state and the proofs are corres-
pondingly simple — but indirect and non-elementary.

2. Generalities. Let G be an arbitrary LCA group with measure
algebra M (G) having a maximal ideal space 4 (M (G)). We regard elements
of 4 (M (G)) as generalized characters

1 =)e [] L=

neM(@)

which satisfy

(i) p«r=>2, =2 (p ae),
(ii) x,,.,(w—i-y) = xp(w)Xv(y) (ux» a.e.), and
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(iii) SuP /gl = 1.
We write 4(u) for the image of the projection yw~»>y, and give

A(p) the o(L*(u), L'(u))-topology — noting that the continuity of these
projections now defines the Gelfand topology on A(M (G’)).

The terminology which follows is modelled on that of Williamson
in [6]. Since the latter author includes a spectral norm condition, there
is a minor discrepancy which will be made irrelevant by the fact that all
measures discussed in Section 3 will be positive.

Definition. Let ueM(G) and suppose that D is a subgroup of G.
(i) u is said to be independent power (i.p.) if, for all positive integers
n, m, n m
utnon | gm=>n = m.
(ii) u is said to be i.p.A. (A for Atomic) if, for all positive integers
n, m and for all z, y G,

d(x)*u"non | S(y)*um=>n=m, x =y.

(ili) 4 is said to be i.p.A. mod D if, for all positive integers n, m and
for all z, y <Q,
S(x)*u"non | d(y)*u™=>n =m,rv—yeD.

Evidently, u is i.p.A. if and only if x is i.p.A. mod0. Also, x is i.p.
whenever u is i.p.A. mod@. However, we have

ProOPOSITION 1. Every u in M(G) which is i.p. i8 also i.p.A. mod@
if and only if G is a torsion group.

Proof. If @ has an element x of infinite order, then the atom &(x)
i8 i.p. but not i.p.A. mod@. (If this suggests an obvious modification of
the statement, then consider, for non-discrete @, 8(x)* u - u?, where u is
a continuous measure supported by a perfect independent set.)

Suppose, conversely, that ux is i.p. Then, by (3.3) of [1], for each
constant ¢ of modulus one, there exists y’e4(M(@)) such that z% = ¢
(# a.e.). Thus &(z)*u"non | (y)*u™ implies x5, _,)(z —y) = ™ ™°, Hence,
if m # n, —y has infinite order. (The map zw~>y3, (%) = é(z) (1°) is
a (not necessarily continuous) character of G.) This completes the proof.

Before specializing to our main objective in the next section we
give another simple proposition. Let us write G (u) for the L-subalgebra
of M (T) generated by x and the atoms J(x) for x «@ so that G'(u) consists
of the measures absolutely continuous with respect to sums of the form

D@l (8(za) * |ul™),  with |ul® = 8(0).

n=0
We note that generalized characters in A4(G(u)) satisfy the same
formal relations as those written down for 4(M(T)) and we denote by
4% (u) the collection of u-coordinates of generalized characters of 4 (G(w)).
Then A(u) < 4%(u) and we have
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PROPOSITION 2. Let ueM(G). Then the following are equivalent:
(i) @ %8 ©.p.A. modG;

(i) 4%(u) contains a non-zero constant with modulus strictly less than
one;

(iii) A%(u) contains all comstants with modulus not greater than one.

COROLLARY. If A(u) contains a non-zero constant with modulus strictly
less than one, then p i8 t.p.A. mod@.

Proof. For (eC, |£|<1, define ¢(d(z)*p") =" n =0,1,2,...
A glance at the defining relations for generalized characters shows that (i)
guarantees the consistency of the obvious extension of ¢ to a generalized
character of G(ux). Thus (i) implies (iii).

It is trivial that (iii) implies (ii) ; 8o let us assume that there is y € 4(G'())
with z, =¢ (s a.e.), where 0 < |f|<1. I &(z)*u" ] 8(y)*u™, then
Aoz-y)(@—y) = L"7". Bince |[xsp—y(®—y)l =1, this gives m = n. Thus
(ii) implies (i), and the proof is complete.

The corollary is immediate. It seems reasonable to conjecture that
its converse is false but the question does not appear to be easy (P 845).

3. Bernoulli convolutions. Throughout this section u denotes a sym-
metric Bernoulli convolution

n=1

° (1 1
P (3 a<0)+?a<d,.))

in M(T), where ¢ = 3 d, <1. (The limit is in the o(M(T), C(T))-topo-
n=1

logy.) Thus u = 8(—c)*pu.

In fact, we shall be concerned with two special classes of convolu-
tions.

We say that u belongs to A if every constant of modulus not greater
than one belongs to the closure of the (restrictions of the) continuous
characters of T in 4 (u).

We say that u belongs to B if there is a sequence (a,) of integers (= 2)
such that

a;' =p, = ”a, for each n.
r=1

Hewitt and Kakutani proved in [3] that if u « B satisfies D' 1/a, < oo,
’ na=1

then xe¢A. We show in [2] that given x in B, then ueA if and only if
supa, = oo, but this stronger result will not be needed here. Kaufman [5]
n

extended the results of Hewitt and Kakutani in a different way. He
exhibited measures u, with much less arithmetical constraint than mem-
bership of B implies but with strong lacunarity properties, which belong
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to A. The same author (loc. cit.) gave a direct proba,bilistic argument
that certain x are i.p.A. modT, and hence that u+ u = u+6(—c)*u
has independent powers.

We now prove

PROPOSITION 3. If u is i.p.A. modT and the constant re®, where 0 < r
< 1 and 0/= is irrational, belongs to the closure of the continuous characters
in A(u), then u, u have mutually independent powers.

COROLLARY. For every u in A, u, u have mutually independent powers-

Proof. Note first that the hypothesis that u is i.p.A. modT is redun-
dant if r £ 1. (Use the corollary to Proposition 2.) This shows that the
present corollary follows from the proposition.

To prove the proposition assume that u, r and 6 satisfy the given
conditions and that u®unon | u®u’. For convenience, write y™ for the
generalized character corresponding to 2" (i.e., for each »eM(T), 5™ ()
= exp(2ninx) = 2"(x)) and suppose 2"®re® in A(u). By extracting
a subsequence, if necessary, we can suppose that x(l‘”_'(_’%))—> Xusn 1D A(p+ p)
for some yed(M(T)). Then we have y, = re” (a.e. u), while yx; is the
o(L*(#), L'(u))-limit of ("(")) = 2", and hence equals re~? (a.e. ).
We now have

yPHai(r—-2)0 _ rs+tei(s—t)o,

which gives that p —¢ = s—1t. But
0(—qd)*uPt9non | 6(—td)*utt,

gives that p+q = s+t It follows that p =s, ¢ =¢ Thus u, z have
mutually independent powers, and the proof is complete.

From now on we concentrate on the class B and the proof of our
main result which will require some preliminary lemmas. For ue<B we

write
.Dn = {Zeid,': & = 0 or 1}
i=1
and denote by D (D = D(u)) the subgroup generated by {d,: n = 1,2,...}.

We write also

o = % —-(am 1 6(dy))

k= n+l

and make the obvious but important remark that

p=2"" D' 5(d)*u,.

deD,,
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This leads quickly to the fact that, in the case where a, = 2 for all n
greater than some n,, x4 is a weighted sum of translates of the Lebesgue
measure restricted to some interval. Accordingly, we rule out these meas-
ures and restrict attention to the class B’ for which infinitely many a,
do not equal 2. It is also clear that the measures {d(d)*u,: deD,, n
=1,2,...} span L'(u). This gives the following criterion due to Johnson
[41:

LEMMA 1. Let u eB'. Then 2" —re® in A(u) if and only if p(n(k))->re®
and 2"*)—1 pointwise on D.

Proof.

["0d(8(d) %) = 2"®(d) [P,

2" u(n(k)) = ( Z 2" ( d)) fz"(’"dy forn =1,2,..-

deD,,
LEMMA 2. Let ueB'. Then there exist sequences (n(k)) and (q,) of positive

integers such that @, < angy k=1,2,..., and ap = qxl@,gy—>a with
0<a< }. For any such choice, 2" -1, 7 pointwise on D, and
COos Ta,, 2 |/‘:‘(Qkpn(k)—1)| > Sin27¢ak/27tak’ k= 1, 2’ coe
COROLLARY. Every ueB' is i.p.A. modT, in particular, u is singular
and pu+ p has independent powers.

Proof. The exmtence of the sequences is obvious. Any d e D is a finite

sum of the form 2 b.d,., where b, are integers, and hence
m=1
@k Pn(ry—14 = 0(mod1) for n(k) > m'+1.
Thus 2*""®-1_1 pointwise on D.
Observe next that

l‘\‘ (9% Prixy-1)

1
——(1+exp 2mia)) H 5 o OXP (20 Oy 1 Burea -+ Bugyim) -

Therefore,

cosS way > I,&(qkpn(k,_;)l = ncos(nak/2m) = 8in2na;/27ay.
m=0

By passing to a subsequence, if necessary, we can assume that
P (QkPngxy—1) converges. Then, by Lemma 1 and the corollary to Proposition 2,
the corollary follows.

Note. Of course, neither the lemma nor the corollary is in any
sense a best possible result. The lemma is what we need and the corollary
is stated here to show how much can be obtained with the minimum
of effort.



306 G. BROWN AND W. MORAN

LeMMA 3. Let (8;) be a sequence of real numbers such that as;—0(mod1)
for a in a set of the Lebesque measure } in [0, 3]. Then 8,—0 (no mods).

Proof. We see that exp(2nis,y)—1 pointwise except on a set of
y’s of the Lebesgue measure zero in R. By the Dominated Convergence
Theorem, it follows that the characters of R, determined by the 2=s,,
converge to 1 in the o(L*(m), L*(m))-topology of Haar measure m, i.e.
they converge in the Gelfand topology of the maximal ideal space of
L}(R), and hence in the usual topology of R. It follows that s,—0 and
the lemma is proved.

LEMMA 4. Suppose that p belongs to B', that (x)*u"non | u™, and
that 2"®—{ 5£ 0 (a constant) in A(u). Then there is a sequence (k(j)) such
that n(k(j))z—0(mod1).

Proof. Observe first that n = m by the previous corollary. We
write again y™ for the generalized character induced by 2" on each measure
in M(T) and we denote the measure 8(x)+ 3 2~ "u" by ». Since 2"®—>¢

n=1
in A(u), there exists a sequence (k(j)) and a generalized character y of
A(M(T)) such that ¢y in A(»). Then

2oy (@) Xy () = X,m () = X,n(?)
for some set of ¢ with positive measure relative to x". This gives the equa-
tion ()" = ", which implies 2"*"—1 and the required result
follows.
THEOREM. Let

© (] 1
u =;_e1(3 30)+ 5 6(«1,.)),

where d, = (6,0, ... a,)"", be a measure in B. Let D(u) denote the countable
subgroup of T generated by {d,: n =1,2,...}. Then u is i.p.A. mod.D(u)
if and only if the sequence (a,) does not contain arbitrarily long blocks of
consecutive 2’s.

CoROLLARY 1. Suppose ueB and (a,) does mot contain arbiirarily
long blocks of consecutive 2’s. Then u, u have mutually independent powers

if and only if
c = Zd,,
18 trrational.
COROLLARY 2. Let u belong to B and suppose that

supa, = oo,
n

Then u, p have mutually independent powers.
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Remark. The class of measures for which x fails to be i.p.A. mod D (u)
is, of course, much larger than the complement of B’. An interesting
example of & measure x which is not i.p.A. mod D(u) but is nevertheless
such that u, u have mutually independent powers is obtained by defining
a, = 2, unless » is prime, in which case a, = 2". (The assertion is justified
by Corollary 2.) On the other hand, the Cantor measure

«© 1
p= % (8(0)+537")

is i.p.A. mod D (u) but u? = pu.

Proof of the theorem. Suppose first that (a,) does contain arbi-
trarily long blocks of consecutive 2’s and choose a sequence (n(k)) of
positive integers such that, for k¥ = 2,3,...,

(1) n(k)—n(k—l) > k a:nd an(k) = a,,(k)_l = ohee = an(k)_k =2,
Write

Yy = Z i)y

k=2
and, for each m =2, 3, ...,

y(m) =Zdn(k)'
k=2

Clearly, y ¢ D(u). Since u is fixed throughout the proof, let us agree
to write D for D(u). For p < ¢q, we write also

q
Doy = {i-%:.ls‘d‘: g =20 or 1}5

in particular, D, , is the set we denote also by D,. We i)rove next that,
for m =2, 3,...,

. m
(2) [8(y(m))sp—ul <2(1—[Ja—275).
k=2
Fix m and recall that
(3) p=2""" 0 3 3(d) * prngm
dtD”(m)

where the measures being summed are mutually singular positive measures
of unit norm. Now, given deD,x_,nx (K =2,...,m), then d-+d,q,
€ Dyye—1),n(x) €XCEPY possibly when d = d' + > d,,, where @’ e Dyy_y) niry—r and
the summation is over all values of » from n(k)—k+1 to n(k). We see

m
in this way that, for at least 2™ [T (1 —2~*) choices of d e D,y, it follows
k3

that y(m)+d belongs to D,,. But in such a case d(y(m))*8(d)* pum)
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is one of the measures appearing in the summation on the right-hand
side of (3). The resulting cancellation gives estimate (2).

Observe next that &(y(m))*u—d(y)*u in the o(M(T), C(T))-topo-
logy as m—oc. Hence, from (2) we deduce

(4) 16(y)*pu—ul < 2.

But (4) shows that 6(y)*u, p fail to be mutually singular, and hence
that u is not i.p.A. mod.D.

Suppose now that u B, (a,) does not contain arbitrarily long blocks
of 2’8, and that §(x)*u"non | u™. Since we have already seen that n = m
in this situation, it will suffice to assume that x¢D and obtain a contra-
diction. Write

x =2w,,dn with 0< 2, < @,.

(i) Suppose 0 < @) < @y —1 for infinitely many &k with
a = Supan(k) < o0,
K

Then
Pay—1% = 7i(modl),
where
T = (TpgeyOngiy) + (T £1/Fnpy gy +1) + < -«

Then ¢~ ' < 7, <1—a! but, by Lemmas 2 and 4, some subsequence
of (r,) tends to zero (modl). This is the desired contradiction.

(ii) Suppose 0 < @) < @ppy—1 for infinitely many k¥ with a,y)—oco.
It is important to note first that

(5) 9k Pnpy—12—>0(mod 1)

for every sequence of integers 0 < g, < @,y such that g¢./a, = @, con-
verges to a with 0 < a < . This is also justified by reductio ad absurdum.
For, in the contrary case, the sequence of fractional parts q,p,u)—,&—
~ [@xPn@)-1%] has a subsequence converging to, say, § # 0 or 1. Hence
the corresponding subsequence of

zakpn(k)—l(w) = eXP (2TigyPn)—1%) — €Xp(2mif) # 1.

In view of Lemma 2, we can find a subsequence of this such that
the corresponding subsequence of ﬁ(qkp,,(k)_l) converges and hence, by
Lemma 1, the corresponding subsequence of z”**"®-! converges to a non-
zero constant in 4 (u). Taking yet another subsequence of this, as guaran-
teed by Lemma 4, we find a subsequence (of the first subsequence chosen)
so that the corresponding powers of z evaluated at « tend to 1. This is

a contradiction and (1) has been established.
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We now write

8 = Tpgy + (“’n(k)+1/an(k)+1) + (wn(k)+2/a’n(k)+lan(k)+2) +.eey

make the estimation 1 < 8, < a,y)—1, and replace 8, by t;, =8, OT a,,) — 8,
whichever has smaller modulus. This gives that

(6) ¢, does not converge to zero.
Using (5), we see that, for allowable a,,
(7) a;t,—>0(mod1).

Making the special choice ¢, =1, we have #;/a,4, —~0 (modl), but
by the choice [t,/a,y)| < 4 so that '

(8) tk/Ongy—>0 (DO mods).
Now, for 0 < a < }, choose ¢, as the best approximants in the formula
(9) (Gr/Bniaey) — @l < 1/ @py.
Then, by (7)-(9),
(10) at, = ait,+(a—a;)t—>0(modl).
By Lemma 3 it follows that
(11) tx—>0 (no mods).

The combination of (6) and (11) gives a contradiction.

(iii) The remaining case is where x, = 0 or a, —1 for all but finitely
many n. Since x¢.D, there must be a subsequence (n(k)) such that x,
= Gnp) — 1 and .’v,,(,,)_,_l = O_fOI‘ all k. If a,,,(k)—> 00, then the estimate a,,(k) -1
< 8 < @, —3% ensures (6) and a contradiction as before. If

limsupa,;, =a< oo and a #2,

then, by passing to a subsequence, if necessary, we can arrange G,;, =&
and use the estimate } <7, <1—(2a)~'. Thus, the problem is reduced
to the case @,y = 2. This is stage at which we are forced to use the hy-
. pothesis that the length L of the longest block of consecutive 2’s in (a,)
is finite. In fact, we assume n’(k) to be the greatest integer less than
n(k) such that a,q # 2. Denoting by 7y, s, the quantities associated
with (n’ (%)) and corresponding to 7, s;, we obtain the estimates

27 < g < apgy—27E, a2 L <1—-27EHg Y,

where a = SUP Gy ) -
The methods of (i) and (ii) remain available, and the proof is complete.

Proof of Corollary 1. Rationality of ¢ gives a relation of the
form u? = u% whereas if ¢ is irrational, then gc¢ D for every integer g.

10 — Colloquium Mathematicum XXVII.2
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Proof of Corollary 2. Suppose that supa, = oo, and, for any
positive integer ¢, write

o0}

@ =z = Zw,,d,,

n=1

a8 in the proof of the theorem. Noting that, for any positive integer m,

g D dy< qdn,

n=m+1

we have a sequence (n(k)) such that a,z—>oo and ¢ < @, < 2¢. By
part (ii) of the proof of the theorem, we deduce the required result.

The corollaries are not best possible and it seems to be difficult to
determine necessary and sufficient conditions for u, u to be mutually
power independent. We give two examples to indicate the possibilities.

Example 1. There exists ueB such that s+ u has independent
powers and u is not i.p.A. mod D (u).

In fact, we can find such a x by defining

a, =3<>n+1 = }k(k+3) for a positive integer %,
a, =2 otherwise.

We see after some calculation that

—3¢ = )37k~ ¢+Ak-DE(mod1) for ¢ = )'d,.

k=2 N=1
The infinite sum can be rewritten as >’ d, ), where n(k)—n(k—1)> &k
kw2

and @, = Guu)—1 = --+ = Gugy_k+1 = 2. Therefore, the method of the
first part of the proof of the theorem shows that 6(—3c¢)*unon | u.
It follows that

u = 6(—3c)*u*unon | u°.

We have now shown that u is not i.p.A. mod D(u) and that u, u fail
to have mutually independent powers. On the other hand, u B’ so, by
the corollary to Lemma 2, u-+ u has independent powers.

Example 2. There exists ueB with supa, < oo such that x is not
ip.A. modD(u) but u, u do have mutually independent powers.

In fact, a suitable choice of u follows from the definition

2, kk—1)<n<k?
a, =
" |3, k< n<k(k+1),
where ¥ =1,2,3,...



BERNOULLI CONVOLUTIONS 311

It is an immediate consequence of the main theorem that u is not
i.p.A. mod D(u). Now, we show that if s, m are positive integers, then
8(mo)*u’non | u® leads to a contradiction. In fact, we write

me EZw,,d,. with 0 < 2, < a,

and show that the proof of the theorem can be adapted. Observe at the
outset that the only case which can cause trouble is where @, = 0 or
a,—1 for all but finitely many n. From the equation

[- <]

dp = dyg—y(1+27'+...+27H+ D' 4,

n=k(k—1) n=k2+1

together with the inequality
2m > m@A+271+...+27%) > (2m—1)+3,
which holds for ¥ sufficiently large, we can write

mZdn = Zz,,dn,

N=] Nn=]

where, for k sufficiently large,
2y =M, B<n<k(k+1),
(12) 2, =0orl, Kkk+l)<n<k?
Zegerr) = 2M—1,  Zugiyy = 1.

For notational convenience let us now fix k¥ (in fact to be chosen
suitably large depending on m) and write ¢ = k(k +1). Then the inequality

m Z d, < md,
Nn=g+41

shows that
(13) Y tpdn < 4.

N=mg+1

Since *
g2, Y 2y = @34 Y w,d, (mod1),
n=1 Nl

we see from (12) that

)

-;— (2m—1)— -;— @, = d;_‘l( Z w,,d,,) —d;_ll(iz z,,d,,) (mod1).

n=q+1 =g+l
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In view of (13), we deduce that
(14) 2, = 2m—1(mod3).

The residue must be 0 or 2. To rule out the first possibility free k
for the moment and consider the sequence ('n(k)), where n(k) = k(k+1),
together with the estimate § < r, < 3 (in the notation of the proof of the
theorem). This argument forces ., = 2 for large k and, feeding this
information back into (14), we have s, = 2 for the original q.

Let us write 2m —1 = 3p, 42, where p, is a positive integer. Now,
the congruence,

d;’, (an,,dn) =d;’, (S‘wndn) (mod1),
Na==] fNm=]

gives that

1 2 < 1 2 <

FM+P)+5 4007 D sady = — 0,1+ 5+(98)" D wady(modl),
n=g+1 n=g+1

from which we deduce that
(16) %y = m+p,(mod3).

This time the zero residue is ruled out by consideration of the sequence
(n(k)), where n(k) = k(k+1)—1, together with the estimate 2/9 <r,
< 4/9. It is now clear that proceeding in this way we obtain

Xy =Ty = ... =Bg gy =2
together with k positive integers p,, ps, ..., P, satisfying the relation
(16) m+p; =3p;,+2, j=1,...,k—1.
But (16) leads to
(17) Pr—Pir_1 = 3 (py—p,) <3 *m.

This shows that, for k > 14 (logm/log3), the p; are all equal to
some constant p. But then

om = 3(p+1) = 2(p+1) = 0,

and we have obtained a contradiction. This completes the proof that
4, # have mutually independent powers.

It is clear that the above techniques can be used to obtain many
more sufficient conditions on a measure ueB for u, u to have mutually
independent powers.
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