COLLOQUIUM MATHEMATICUM

XL DEDIE A LA MEMOIRE D’EDWARD MARCZEWSKI 1979

ON PROBLEMS
RELATED TO CHARAOTERISTIC VERTICES OF GRAPHS
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In this paper we consider the Steiner problem for graphs and
its generalizations. The notion of a maximal geodetic branch for a simple
graph is introduced. The notion of a centroid for the class of simple
graphs is generalized. A simple necessary condition for a vertex « to be
in the o-centre of a graph is obtained. For a generalized Steiner problem
a necessary condition for an optimal partition is presented. Some open
problems on the sets of characteristic vertices of a graph, in particular
on the peripheral vertices defined in the paper, are formulated.

Introduction. Let ¢ = (X, U, ¢> be a simple, connected graph and
¢(o, ¥) a natural metric of the graph, i.e. the number of edges of a geodetic
chain linking vertices x, y € X. Let us denote by # the class of all trees.

Let us take @ € #. Every vertex y of G cuts the tree @ into connected
subgraphs. We denote by

2(y) = [Xy, Xgy ...y Xp], XinX; =90, UX; = X\{y},
the corresponding partition of the set X\ {y}. We shall call it the natural
partition of X determined by the vertex y. In the theory of trees, the

following functions defined on the set of vertices and related to the metric
¢ are considered:

(1) e(y) = n:ge(w, Y),

(2) a(y) =‘_E§§MIX¢I, X, eR(y),
(3) o(y) = D o(z, 9),

(4) dg(y) = i‘r;%mlme ly

where < X is a set of end vertices of a tree,

(5) oz(¥) = D e(#,9).
zel
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It is easy to see that only functions (1) and (3) are meaningful in general
case where @ belongs to the class ¢ of all simple graphs. The sets of char-
acteristic vertices of a tree are closely related to functions (1)-(6) and
they play an important role in practical applications in various branches
of science and technology.

For the sake of simplicity, {y € X: f(y) —min} will stand for

yeX:f(y) = Ifeigf(w)}

and, analogously, for max.
The set Z = {y € X: e(y) —min} of vertices is called the centre of
a graph. For G € # we have the classical Jordon-Sylvester Theorem:

THEOREM 1. Every tree has a centre composed of one or two adjacent
verlices.

The proof of Theorem 1 (see for example [2]), based on elimination
of end vertices from a tree, leads to a simple procedure (linear in the
number of vertices) for obtaining the set Z.

The set P = {y € X: e(y) —max} is called a set of Z-peripheral vertices
of a graph. For G € # there is, evidently, P < E.

The set W = {y € X: d(y) —min} is called a centroid of a tree. Here
we have an interesting

LeMMA 1. ye W if and only if | X;|<}|X]| for t =1,2,...,m.
Recall also the classical Jordan Theorem:

THEOREM 2. Hvery tree has a centroid composed of one or two adjacent
vertices.

Using Lemma 1 we can obtain a simple procedure for finding vertices
of the set W: starting from an arbitrary vertex of a tree we arrive at an
adjacent vertex belonging to that branch X; for which |X,;| > }|X]|
(it is easy to see that there exists at most one such a branch). Repeating
this procedure we obtain the vertices of W.

The set {y € X: d(y) —max} determines a set of peripheral vertices
which, as is easy to see, consists of all terminal vertices of a tree (is iden-
tical with the set E).

1. Centroid and o-centre of a graph. The set Z, = {y € X: o (y) —min}
is called a o-centre (median) of a graph. The set Z, is a solution of
Steiner’s problem (see [3] and references in that paper) for graphs.
Let Ge# with | X| =n. Let ye X, 2(y) = [X,, ..., X, ]. For every
vertex vz e X, (j = 1,2, ..., m), which is adjacent to vertex y, we have

o(y,2)+1 for 2 ¢ Xy,

) o(@,2) = e(y,2)—1 for ze X,.
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Let | X;| = k. Let Y = (X\X;)\{y}. Hence |Y| = n—k—1. By (»)
we have

De@ 2 =D ey, w)+(n—k—1)+e(@ 9+ D ely,v)—(k—1)
geX

uey veXy\(z}

= D' o(y,2)+n—2k.

geX
Let |X;| > }|X|. Hence n—2k = |X|—2|X,| <0, so that

o(y) = D e(y,2) > o(a).
geX

Thus we have

LevmA 2. If yeZ,, then | X;|< }|X]| for ¢t =1, 2,...,m.

Let | X;| < }|X|. Then, for # € X; adjacent to the vertex y, we have
n—2k > 0 and o(z) > o(y). This property is hereditary for every z, € X,
adjacent to x,_,. Hence we have

LeEvMMA 3. If |X;| < }|X| for j =1, 2,...,m, then Z, = {y}.

Now let us assume that there exists a set X; belonging to the partition
#(y) such that |X;| = }|X|. There is only one set with that property.
For z € X}, incident with y, we have a(z) = ¢(y)+n—2k = o(y). Thus,
by Lemmas 2 and 3, we have

LevMmA 4. yeZ, if and only if | X <3|X]| for ¢ =1,2,...,m.

Hence, for G € #, we obtain

THEOREM 3. W = Z,.

Thus we have obtained another definition of the centroid in the class
of trees which makes also sense for an arbitrary simple graph @. By Lemma 4
we have also obtained a known simple procedure for the determination
of the set Z, for an arbitrary tree.

Till now there is no practical procedure for the determination of
the set Z, for a simple graph. As it was shown in [3], the problem posed
for the class ¢ of simple graphs may be reduced to the determination
of Z, in a bi-connected graph. Similarly, the problem of the determina-
tion of a centre Z for an arbitrary graph is solved by the determination
of a centre of a bi-connected graph [1]. The set P, = {y € X: o(y) — max}
is called a set of o-peripheral vertices of a graph. Evidently, for a tree
we have P, < E.

Until now nothing is known about the position of P and P, in a tree
or in an arbitrary graph. It is easy to give an example of a tree with disjoint
gsets Z and Z, = W.

ProBLEM 1. For what class of graphs Z, = Z% For what class
of graphs P, = P% (P 1149)
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The notion of an end vertex of a tree may be generalized in various
ways to an arbitrary simple graph. One should notice that o-peripheral
vertices can be defined as end vertices and it is possible to introduce
the notion of pseudo-end vertices of a graph as the set of vertices which
are ends of simple maximal paths of a graph. It is easy to prove that if a
vertex cuts a graph into two or more non-empty parts, then it cannot be a
pseudo-end vertex. If a pair of vertices cuts a graph into three or more non-
-empty parts, then no vertex is a pseudo-end vertex.

For an arbitrary graph there are no theorems on sets of o-peripheral
or pseudo-end vertices and on the position of these sets and the set of
Z-peripheral vertices.

The problem of constructing a simple procedure for the determination
of the set Z, for an arbitrary bi-connected graph is a hard one. Even minor
theoretical results play a significant role. It seems important to study
a subclass of the class of spanning trees of graph, namely the class of
geodetic trees. The properties of the whole class of partial trees are
studied in the matroid theory.

A geodetic tree By(x) of a vertex z in a graph @ is a partial tree of
the graph G rooted at vertex # and such that

ee(®,y) = op(@,y) for every ye X.

A geodetic tree of vertex x is the tree of all the shortest paths from
o to all other .vertices in @.

Let Bg(x) be an arbitrary geodetic tree of vertex x and let # be not
in the o-centre of the tree. Then for y in the o-centre of tree Bg(z) we
have o4(y) < og(x). Hence

LEMMA 5. If x belongs to the o-cenire of a graph G, then x i8 in the
o-centre of ils every geodetic tree.

There is a simple method for obtaining all geodetic trees of a vertex
z in a graph G. To the vertex z there corresponds exactly one subgraph
(a partial graph) of the graph @ obtained by omitting the edges which
are of no use in evaluation of o(z, y) for y € X. Next we divide the set
of vertices of the graph @ into subsets N,(z), N,(%), ..., N,(x) as follows:

Noy(z) = {#}, N,(2) =T,

Nipa(2) = ( U Pyj\Nk(w))\Nk—l(w)'
vjeN(z)

From every N, we eliminate the edges [y, y;] for y, y; € N, ().
The partial graph of the graph @, obtained in this way, is called a geodelic
subgraph of @ with respect to the vertex z. It is easy to see that, for
every y € N,(«), by omitting all but one edges linking y with the vertices
of N,_,(x), we shall have an arbitrary geodetic tree of vertex z.
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Now let us form a family of subsets of a set of geodetic subgraph
vertices of G with respect to the vertex #. We do it as follows: let I", =
= {yy ..., Yo} and for every y; € I', let us form subsets D(y,) of X such that

Y€ D(y), Iy, Na} < D(yy),
ze D(y)NN,(2) = I',N Ny, (2) < D(y,).

The set D(y,) is called a mawimal geodetic branch of the vertex .
The family of maximal geodetic branches D(y,), D(¥s), ..., D(y,) of the
vertex # need not be a partition of the set X \{z}.

To every geodetic branch there corresponds at least one geodetic
tree of # for which D(y;) is an element of the partition % (x).

Let us consider the funection:

(2) d(z) = inilax.ID(yf)l-

Since for a class of trees the family D(y,),..., D(y,) corresponds
to the elements of partition #(x): X,, X,, ..., X,, the function in (2')
is identical with that in (2). ‘

The set W = {x € X: d(x) —min} is called the centroid of a simple
graph @. The set {r € X: d(r) —max} determines a set of vertices which
we call W-peripheral.

Since for trees the latter set is identical with the set E, it is natural
to call these vertices the end wvertices of a simple graph.

PrOBLEM 2. In a bi-connected graph, determine the mutual position
of the sets of Z-, o- and W-peripheral vertices and of pseudo-end vertices.
Characterize the classes of graphs for which these sets are equal. (P 1150)

By Lemmas 2 and 5 we get

THEOREM 4. If x € Z, in a graph G, then for every geodetic bramch
D(y;) of @ we have |D(y;)| < }IX]|.

Thus we have obtained a necessary condition for a vertex z to be
in the o-centre of a simple graph.

In general case, for an arbitrary graph, one can introduce the notion
of a characteristic set W of those vertices # € X for which the inequality
| D(y,)| < 4| X| is valid for every geodetic branch D(y;).

Hence Theorem 4 is reduced to Z, < W. It is easy to see that W < W.
For the class of trees we have Z, = W = W. In Fig. 1 we present an
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example of a graph for which Z, = W # W. Here for the vertex » we
have o(®) =13, d(v) =4, v ¢Z, x¢ W, x €W, and for the vertex z
we have o(2) =11, d(2) =3, 2€Z,, 2e W, zeW.

ProBLEM 3. Is it true that Z, = W for an arbitrary grapht (P 1151)

PROBLEM 4. Find a simple method for verifying that a given partial
tree is in the class of geodetic trees of a graph. Characterize the class of
graphs for which every spanning tree is a geodetic one. (P 1152)

Remark 1. Let us consider a hypergraph H = (X, #), # = {B}1
of all spanning trees of a simple graph G = (X, U, ¢). Let y; be a o-centre
of a tree B; € #. One can define the function ¢(B;) = o(y;) on the family #.
It is easy to see that if y, is a o-centre of @, then the family of geodetic
trees of y,; is contained in the set {B; € #: g(B;) —min}. The values

maxo(B;) and ming(B))

tel iel
yield an interesting characterization of a given simple graph in the class
of graphs with the same number of vertices |X| = n. The following
problem, related to Problem 4, arises:

ProBLEM 5. Is it possible by means of the function o(B,) to determine
a subset of geodetic trees in the class #% (P 1153)

Similarly, the function ¢(B;) may be defined on the family of partial
trees and the set {B;e #:e(B;)—min} may be determined.

Remark 2. A graph is geodetic if it is geodetic with respect to
every of its vertices. It is easy to prove that the class of geodetic graphs
coincides with the class of all bi-chromatic graphs (i.e., with no cycles
of odd length).

2. Generalization of Steiner’s problem. Steiner’s problem for graphs
may be formulated in a more general way: find a vertex of a graph which
has the property that the sum of distances from a given subset ¥ < X is
minimal.

Let us consider the case where Y is the set of end vertices of a tree.
The set

Zoy = {y € X: og(y) —min}

is called the og-centre of a tree.

Let % belong to a ogp-centre. Let an element X; of partition #(y)
of the set X\ {u} contain |E;| end vertices of a tree and let | E;| > }|E|.
Denote by = a vertex incident with # in X;. We have

og(®) = og(u)+ | EN\E;| — | B;| < og(u),

a contradiction. Hence |E;| < }|F|, thus oz(r) = ox(y) and « is also
in the og-centre. Similarly as in the previous section, for Z, we obtain
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LeEMMA 6. yeZ,, if and only if |E;|<}|F|.
It is easy to notice that, in a contrast to Z, Z,, may be arbitrarily
large. Nevertheless, we prove

THEOREM &. The set Z,, determines a subgraph of G which is a simple
path. Every inner vertex of the path has the degree equal to 2 in G.

Proof. Let two non-adjacent vertices # and 2 belong to a oz-centre
and let [, u,,...,u,, 2] be a path linking these vertices. Assume that
Uqy Ugy - ..y U,, A0 MOt belong to the op-centre. Then for an element E; of
the partition, determined in the tree by the vertex 2, containing vertices
x and u,, we have |E;| < 4| E|. For the element of vertex x and for that
of u, containing «, and =z, respectively, we have |E,;|> }|F|. Since
@ belongs to the ogz-centre, | E;| = }|E|. It follows that the vertex , also
belongs to the ogx-centre and we get a contradiction. If vertices x, » and
2 of the path [, ..., u,...,2] belong to the oy-centre, then the elements
of partition determined by » and containing # or z have exactly |E|
end vertices. Since every element of the partition contains at least one
end vertex of @, the rank vertex # is equal to 2.

Remark 3. Taking into account the distance from the set of end
vertices we can consider functions

(6) 6g(y) = min(x, y)
zel
and the set {y € X: éz(y) —max}. There are simple examples where that
set is disjoint with Z. The definition can be generalized to an arbitrary
simple graph where the set E contains generalized end vertices.
Now let us take up the generalized Steiner problem for graphs related

to various practical applications. We shall formulate the problem for
a class of trees.

A partition of the set X of vertices of G = (X, R) into subsets
Yl’ YE’ ** Yk’

k
YinY; =0, i#j, UY;=2X%,
i=1
such that a subgraph Gy, = (¥, By is a tree, is called a proper k-parti-
tion of G.
Let y; € Y; be one of the o-centre vertices of Gy, Consider the sum

k

(%=) 2 o(¥y).

i=1

The partition for which number () is minimal is called a o®-parti-
tion of @, and the set {y,,...,¥,} is called a o™-centre of Q.
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We have no theorems on o®-partitions of trees which would help
us to construct a simple procedure for the solution of the problem even
in case of k = 2.

It is possible to obtain a necessary condition which allows a reduction
of the procedure of determination of the o®-partition. Let [Y,, ¥,]
be a o?-partition of the tree. We denote by (w, v) the edge linking the
sets ¥, and Y, where ue ¥Y,,ve ¥Y,. Let o(y,, %) > o(y, %), where y,
and y, are vertices belonging to the o*-centre of the tree. Let us denote
by V the set of vertices belonging to the components of G obtained by
omitting the vertex » and a vertex which does not containy, andy,, V < ¥,.
Let | V| = p. Combining the sets {u}uUV and Y, we obtain a new proper
2-partition. The sum (x*) is increased by at most

po(ysy w)+ 2 o(u, 2)

zeV
and decreased not less than by

po(y,, u)+ 2 o(u, 2),

eeV
hence it decreased by not less than p[o(y,, %) — o(ys #)]. Thus we have

THEOREM 6. If y, and y, belong to the o®-cenire of a tree G and u, v
is an edge of partition, then o(y:, u) = e(¥a ©) o |e(¥s 4) —0(¥s )| = 1.

Evidently, we also obtain |

THEOREM 7. If a set of edges U, which are not hanging edges of a iree,
18 not empty, then there exists an edge belonging to U determining a o®-par-
tition.

Application of both necessary conditions for the o®-partition may
be considered in the most simple case of a simple path. Let [xy, ..., #;]
(k> 3) be a simple path. The partition of the path is determined by
the edge [#;, #;,,]. With no loss of generality we can assume that each
part of the partition contains an odd number of vertices. Thus the verti-
€68 @(y1y;e aNA ;1 are the o-centres of each of the parts, respectively,
and the necessary condition (see Theorem 6) for the edge [«;, #;,,] to deter-
mine the o®-partition is here reduced to the equality

; l+d  i4+k+1
2 2

—(+1),

hence ¢ = k/2.

It is easy to see that the problem of o-partition may be generalized
to an arbitrary graph. In that case a proper partition of a graph into
connected subgraphs will be determined by a certain cut of the graph.
The problem of obtaining even simple necessary conditions is certainly
a hard one.
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In some practical considerations an additional condition e(y;) <O
for the parts of o™-partition may be introduced, where C is a fixed con-
stant.

PrROBLEM 6. It seems that a classification of trees with the fixed
| X | = n» with respect to a minimal value of o(y), ¥ € X, should be per-
formed in considering the problems of o™®-partitions of trees. (P 1154)
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