iASTOSOWANIA MATEMATYKI
PPLICATIONES MATHEMATICAE
XVI, 2 (1978)

K. JAKUBCZYK (Gliwice)

APPROXIMATION BY CIRCULAR SPLINES
FOR SOLUTIONS OF ORDINARY DIFFERENTIAL EQUATIONS

In the paper a procedure for obtaining a circular spline approxi-
Mating the solution of the initial value problem in ordinary differential
“Quations ig presented. ,The function approximating the exact solution
18 of class (. The proposed method is a one-step method of second order.

1. Introduction and description of the method. Loscalzo and Talbot
Presenteq in [2] and [3] a method for the construction of a spline function
of second or third degree being the approximate solution of the initial
Value proplem in ordinary differential equations. Their method relates
to the well-known linear difference formulas of closed type: the trapezoidal
Tule and the Milne-Simpson method.

Splines and circular splines are applied to numerical control of ma-
€8 connected with a computer [1]. So there is the question: Can we find
llarly the approximate solution of the initial value problem in ordinary
‘erential equations in the form of a circular spline? The purpose of
18 paper is to give an answer to this question. The method proposed leads
® 3 non-linear difference formula of closed type.
Definition 1. Let [a, b] be a closed and bounded interval on the
aXis. The function s e ('[a, b] is said to be a circular spline if there
b an integer number N and 2 partition of the interval [a, b],

chip,
Sim;

Tea]
€Xig

6 =2, <, <...<%y =0b,

“Uch that s i a circular arc in each of the subintervals (@ @pprly® = 0,1,

o N1 (we agsume that the straight line is a circle with radius r = oo).
Definition 2. The points ®;, @,, ..., By_, are called knots or joints.
Let the differential equation be of the form

(1) y =f(=,9), ea<z<b,

VIth the initial condition

2
) y(a) = Y.
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We assume that f is continuous on some domain @,
G ={=,9): a<x<b},
and that on G it satisfies the Lipschitz condition
(3) If(@,y)—f(®, ¥y <Lly—y*"l, =ela,bdl.

Thus the existence and uniqueness of the exact solution to (1) and (2)
are guaranteed.

‘We shall construct the approximate solution s in the form of a circu-
lar spline for equidistant knots, i.e., we assume that

(4) %, =a+nh, n=0,1,...,N,

where h = (b—a)|N. It is possible to omit this assumption and employ
a variable stepsize. We require also that s(x,) = y(x,) and s’ (x,) = ¥’ (%)
where y is the exact solution to (1) and (2). Starting with the known values
8, = 8(my) and s, = 8'(x,), it is proposed to calculate successively the
values

S =8(%y), 8, =8'(x,), m=1,2,..., N,

by requiring that s satisfies (1) for »# = @,, #,, ..., #). In this manner we
obtain a circular spline s satisfying the equation

!

(5) $n =f(ny 8), n=0,1,...,N.

Note that any three values from among s,, s, $,,1, Sp.1 are suffi-
cient to determine the circular arc being the component of s in the subin-

terval [x,, ©,,,].

2. A certain relation for a circular spline. Let (p, g) be the centre
of a circle of radius r, and let (,, s,) and (%,,,, $,,,) be two points both
lying either in the upper or in the lower part of this circle. Moreover, let
s, and s, be the values of the first derivative of the circle at these points,
respectively, and let # = —1 if the points are situated in the upper part
of the circle, and z = 1 if they are in the lower part. Then for ¢ = n, n+1
the following equations hold:

!

$;

P = a’i—zr——-—,‘— q = 3'+ZT.——I-
Vits?’ T Y1tsp
Hence
Sni1 8y
(6) Byy1 — By = 27 ot -
me Vids2, Vids?

and

8 S r - ! )
n % = 2 7o 7 y
! Vi+s? Vi4s?,
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Eliminating 2r and writing » = #,,,—«,, by simple transformations
We obtain the relation

(@) Snt1 = 8+ h(8p+ A (8ny 8n41)]y
Where, for any fixed ¢ € (— oo, o),

z—a
l/1+w“’+l/1 +03’

Thus we have proved the following

. THEOREM 1. If 3 is a circular spline with knots (4), then any two consecu-
Wve pairs of quantities from among the pairs

(8) Ao, ®) =Vite? @ € (— 00, co).

8y = 8(®,), 8, =8(w), n=0,1,...,N,
Satisfy relation (7).

- 3. Auxiliary considerations. We shall need in the sequel the estimates
of the function A and its first and second derivatives with respect to 2.

THEOREM 2. For any ¢, c (— oo, oo) the following inequalities hold:

(9) |A (e, 2)| < V1+e,
(10) 0< A'(0,0) < 2,
(11) 14" (¢, 2)| < 2.
Proof. Differentiating the function A with respect to #, we have
2 2 2
12)  4r(0,0) — Vi+e? Vi4-a2V1i+e +ow+1’ 0,0 € (o0, o).

Vi4+ar  (V14a24+V1402)?
Hence, in view of the inequality
(13) jon] +1 < VI+a*Vi+ter,
We obtain
0< Y1+e*  Jow|+14om41
Vits? (V14 a224V1+e2)e
< Vite 2/itaViter B 2(1+¢?) L 20+e)
Vit g (V1+a24+V1+e2)2:  (Vi4a24V1i+e2)2  (V1462)2 )

This gives the desired estimate (10).
; The left-hand side implies that A is a strictly increasing function of #
OT any fixed ¢. In that case, from the identity

lim A(c, @) = +V1+e?

z—>+ o0

< 4'(¢, @)

Ve get (9),
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Differentiating (12) with respect to z, we have

-A”(cym)
_Vite? (o—a)(V1+a2+V1+e?)—20V1+a? 1+0w+l/1+m21/1+02)
1+ 22 (A +22)(V1 + 22 +V1 +¢2)°

¢, % €(—o0, c0).

Hence, by (13), we obtain

Vi+e® (o] + o)) (V1+a2+V1+e?)+4 |2 (14221 + ¢
V1+a? (1 +22) (V1 + a2 +V1+¢?)?
(V1422 +V1+02)2 4 4(1+22)V1+22V1+ 62

(1 +22) (V1 + 2% +V1 +¢2)3

A" (¢, #)] <

<l/1+02

l/1+:z;2+l/1—|—02 —|—4l/1 -{—szl +02
(V1+a2 +V1+e?)

<V1+e?

From the inequality
W1+a2V1i4e2< (V1 + 2% +V1+¢)?

we finally obtain

" 2V 2 2V1 2
A" (0, m)| < 1tet _Wite
l/1+a:2+1/1—{—.02 V1 462

This completes the proof.

4. Existence and uniqueness of the approximate solution. The follow-
ing theorem shows that the construction of a-circular spline (described
in Section 1) approximating the exact solution to (1) and (2) is realizable
and univocal.

THEOREM 3. If h < 1/2L, then for partition (4) there exists a uniqué
circular spline s satisfying identities ().

Proof. Let s, and s, be the values of the circular spline s and its
first derivative at a point =, satistying the identity s, = f(z,, ,) (initially;
by the assumptions of the construction of s, at », we have s, = y, an
8y = f (o, %o))- We want to determine in the interval [x,, #,,,] a circulal
arc being the consecutive component of the function s. Thus the values
8py Smy Sni1y Sny1 Should satisfy relation (7). Moreover, in accordance
with our construction of the approximate solution s, we require that

(14) 3;;-;-1 = f(@ps1r Snt1)-
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This identity is satisfied if and only if
(15) Spt1 =8, +h [3;+A (8;,, f(®pq1y 3n+1))] .

Denoting the right-hand member of this identity by Ir(8541), In View
of (3) and (10) we have

lg"(u) — g (v)| = hlA (8;,, f(mn-l-l’ u)) -4 (s;nf<mn+1’ ”))'
= hA’ (8;, 0, (w, '”)) lf(a7n+1’ %) —f(@py1, V)| < 2Lh Ju —0|

for any w, v. Thus, if h < 1/2L, then g, is a strong contraction mapping.
Applying Banach’s fixed-point theorem, we deduce that equation (15)
% a unique solution s, +1» Which may be found by iteration. Next, having
8lven the quantities s,,, s,, S, +1) We can determine the parameters of the
Sought circular arc and, by (14), the quantity s,,,. So the theorem is es-
tablisheq.
The method of successive computation of the ordinates s,-is described
by the following iterative formula:

Sgii) = sn—i—h[s;—l—A (8;,f(wn+1, sg-)l-l))]’ t=0,1,...

It is best to find the initial prediction s{?), by using the Euler method
or the Runge-Kutta method of second order. The use of methods of order
g.l‘ea:te’r than two is not recommended, since it is shown that the con-
Sldered method is of second order.

5- Error estimates. First we estimate the error of the approximate
Solution ¢ gt the points , .

tha THEOREM 4. If fe C® and there ewist constants M, N,, and N, such
12

of (z, y)
oy

tmd & constant Y, such that for the third derivative of the ewact solution y the
“equality

of (x, y)
fla, 9| < M, ‘f—‘ML’<N

<¥,

[y"'($)| < Ya fOT x € [a7 b]
holds, then, for h< 1/2L,

(16) ly (#,) —8(@,)| < KB,  n =-0,;,.;.,N,
Where
K = A2 Yot Vot Ny 42T - rpma_q5,
L
Proof. Let

& =Y (@) —8py " =0,1,...,N.
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By (8) and (12), this implies A (¢, ¢) =0 and A'(e¢, ¢) = } for any o.
Therefore, we write
Ent1 = y(mn+l) — 841 = y(mn+1) —Sn—h[8;+A(8;, 8;1+1)]

= y(wn) _sn+y(wn+1) _y(wn) -

’ LAY
_ h[s;, + A (875 83) + A (85 87) (Sn1 — 80) + A" (83,8 (1)) E'E‘F}Ea_&”')‘]

’ 7 \2

= &a Y (Bpp1) —Y(2,) — (8n+1+3n) hA”(Sm "7n)) M;'g—ﬂ)

=, +—[y( Bpy1) —Spi1+Y (@) — 8,1+ 4(®, ) —y (2,) —
- _[y ( n+l)+y (.’0“)] hA” (sm $ (ﬂn))'ﬁ}gs_n)

‘We now investigate consecutive elements of the above expression.
Applying the Lipschitz condition (3), we get

(17) l?/(n+1) n+1| L|8n+ll and l?/’(wn) n[ Lle,|.

Next, we have

h _, , 1
(18) y($n+l) _y(mn) - E [?/ (wn+1) +y (a;-n)] < Eha YB’

since the expression within the symbols of the modulus represents exactly
the error which is produced by the trapezoidal rule integrating the fune-
tion y’ within the limits ,,®,,,, and which equals — (1/12)h%y""(£,)
(see [4], p. 127-128).

At last we have also

’

’
8p11— 80 = f(@ny1s 8ns1) —F (@, 8,)

_ 0F (Vay 8(L0)) Of (Vs 8(L0))
0f (¥ny 8(82)) | 0f (vay 8(20))
R L

From (9) we get

I8+ A (85 Spp1)] < 1851+ V182 <1428, = 142|f(,, $,)l-
Hence

(19) 1841 — Sl < BN, + N, (1+2H)].
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Introducing
1
=1z Y3+ [N+ N, (1+2M)F,

I view of (17), (18), (19), and (11) we obtain

Lh
|en+ll lsnl + (Is”+1| + lenl) +Th3
and hence

Lh Lh
|&n 1 (1— -2—*) < lenl (1+ —2—') + Th®.

Since 0 < b < 1/2L, we have

(20) 3. I _
L <1-5-<1.

Thereby, we obtam the recurrent estimate of the error at a point o, ,,
¥ the error at =,

14 Lh[2 T -
|3n+ll < |8n| / + h’s'

1—Lh[2  1—Lh/2
b By this inequality, it is easy to express the estimate of the error e,
Y the known quantities. Indeed, introducing
14 Lh/2 T

—TAE ad D= —
1—Zn2 B 1—Ihj2’

0 =
We have
lens1] < Cle,| + DR,

Then, since ¢, = 0, we obtain

lea] < Dha
leal < Dw? (1+G)7
lea| < Dh3(1+0+02))

cr—1
c—-1"

leal < DR¥(A+C+C*+ ... +0™"1) = DR®
Replacing ¢ and D by suitable expressions, we get
( 1+Lh/2 )
T —Lh/2 [ 1+ LZh/2\" 1]
1—Zh/2 1+Lh/2 1 L 1—Lh/2 )
1—Lh/2

leal <
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Therefore, in view of (20) and the fact that 14 u < ¢* for u > 0,
we can write

T L n n
R (e I R (e R

LT (4/3) L (3, — 2,) \" T 4 \

This inequality proves the theorem.

The function s’ is undetermined at the knots #,, n = 1,2, ..., N —1.
We now define it at these points as follows:

144 1 . 143 .. 17 )
(21) s (»,) =—-[lim s (v)+ lim s (2)], ==1,2,...,N-1.

T, — =Ty +
THEOREM 5. If the assumptions of Theorem 4 are satisfied, then for
all h < 1/2L the inequalities
[y (@) —s(@)| < Koh?, |y () —s (2)| < KB,
ly" (v) —s" (@) < K,h
hold for = € [a, b], where
K, =Y;+2LK+3M(1+M*)[N,+N,(1+2M)F,

6K+ K,/L -
K, = -+4—2/, K, = LE+K,.
Proof. Let ne{0,1,..., N—1}. The function s is formed in the
interval [,, #,,,] by an arc lying either in the upper (¢ = —1) or in the

lower (z = 1) part of a circle. Let 7 be the radius of this circle. Then, by (6)
and (13), we obtain

1 1 Sn+1 Sn
T R | Viten, Vits?
L [ Vids? —s, Vitsl|
T V1i4-82V1+s2,,
_ 1 s Vit —s Vit | (Vi4s7 +Vi4s2,)

“h Vits2Vi4s?2 (Vi4s? +V1+s2)

1 s, (1+82) —I—anl/l + 82V 482, —s V1482V 1 452, —s (1+s,,+1)|
S 2V14s2V1i+s2,

L (sh—Sal(LIsnsnl T VIHsZVitsd ) _ lshy,—sil
1 < _
h 2V1+82V1+s2,, 2

<
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Therefore, if z, 2* € (#,, #,,,), then, in view of the known relation
1 -
#'(@) = — [VI+[s (@T)
and the inequalities
8" (2)| < max {|s;], s} < M, |8 (%) —¢ (2*)] < 8511 — 85l

arising from the convexity of a circle, we can write

18" (@) — 57" (2 =—|lV1+[s @TF - Vit @)

l8n+1

g ——" Il/1+[s —V1+[s (a1 +[s' (@) +

+V1+[8 @ VI+[s (@) +1+[s (a7}
oy [Snt1—8l I[8' (#)]* — [s’ (#*) |
<3(L+M
( ) h V1i4[s' (@) P+ V1+[s' ()]

3(1‘FJ[2)|8n+1 I

L 15 (@) — ' (@%)] 18" (@) + ' (a*)]

- . ’ o’ ]2
<3M(1+M‘2)&”Tﬁ"_.

Hence, by (19),
(22) I8 (@) — 8" (&%)| < 3M(L+M*) [N, +N,(1+2M)Th.
From the Lipschitz condition (3) and estimate (16) we obtain

9’ () — 8" (®,)] = |f(®ns ¥(®,)) —f (0, 8(w,))| < LER?, |
n=0,1,...,N.

(23)

By the mean-value theorem, we have
y,(wn+l) =Y (@) MY (E10)y  Bu< E1n < By
8" (Bpyy) = 8'(®) T8 (E2,n)y B < &g < Bpyr-
OOmbini.ng these identities and (23), we get

’ ; 1
(1) = 8" (8] < - (18 (@) = @)+ 19 (B04) — ' (@0s)]] < 2L,

Therefore, by (22),
19" (@) — s ()|
Sy (@) =y (S0l + 197 (E1,0) — 8" (Eg,n) + 187 (&3,0) — 87 ()]
<{Y;+2LK+3M(1+M*)[N,+N,1+2M)TP}h = K,h

for x e (»,, 2,,,)-

(24)
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By (21) this inequality holds also at the points »,, » = 0,1, ..., N.
This establishes the third part of the thesis.
If » € [=,, ®,,,], then, by Taylor’s theorem,
hz
l?/ (w) ""8(“7)] < Iy (mn) - 8((1?,,)[ + h ly’ (w'n) —8' (wn)l + E" |?I"(’71,n) —3"(771.n)l

and
[y’ (@) — 8" (2)] < 1y (@) — 8" (@) +-21Y" (n2,0) — 8" (N2,n) 5

where 7, ,, 7,y € (®,, Z,,,)- Therefore, by (16), (23), (24), and the ine-
quality h < 1/2L, we finally obtain
1 K,

1
[y (#) —s(2)] < Kh*+ LKh®+ 5 Kb < I(6K+ T) 1 = Kyh?

and
|y’ (w) —8'(v)| < LKW+ K,h* = (LK +K,)h* = K, h’.

References

[1] P. Bézier, Numerical conirol — mathematics and applications, John Wiley,
London 1972.

[2] PF. R. Loscalzo and T. D. Talbot, Spline function approximations for solutions
of ordinary differential equations, Bull. Amer. Math. Soc. 73 (1967), p. 438-442,

[8] — Spline function approximations for solutions of ordinary differeniial equa-
tions, STAM J. Numer. Anal. 4 (1967), p. 433-445.

[4] A. Ralston, Wstep do analizy numerycznej, PWN, Warszawa 1971.

COMPUTING CENTRE
TECHNICAL UNIVERSITY
44-100 GLIWICE

Received on 17. 9. 1976

K. JAKUBCZYK (Gliwice)

APROKSYMACJA FUNKCJAMI SKLEJANYMI Z LUKOW KOLOWYCH
W ROZWIAZYWANIU ROWNAN ROZNICZKOWYCH ZWYCZAJNYCH

STRESZCZENIE

W pracy przedstawiono metode konstrukeji funkeji sklejanej z tukéw kolowych,
aproksymujacej rozwiazanie zagadnienia poczatkowego dla réwnan rézniczkowych
zwyeczajnych. Otrzymane rozwiszanie przyblizone jest klasy Ol. Metoda opisana jesb
za pomocy zamknigtego nieliniowego schematu réznicowego. Jest to metoda jedno-
krokowa rzedu drugiego.



