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Logarithmic derivatives of solutions
of disconjugate differential equations*

by PHILTP HARTMAN (Baltimore, Md.)

Abstract. Let Pp(t,A) = A" +ap,_;()A*"1+...+ay(!) be a polynomial with
continuous real-valued coefficients on 0 <f< w (< o) such that the differential
equation (x) P,(t, D)y = 0 is disconjugate on 0 < ¢t < w, where D = d/dt. The main
theorems imply that (i) if @ is a constant, n is even, and P, (t, a) < 0 (e.g., a = 0 and
a,(t) < 0), then (%) has solutions z(f), z(¢) satisfying z'/z < a < ¢'/¢ for ¢ near w;
(ii) if @ is a constant, » is odd, and P, (¢, a) > O [or P, (t, a) < 0], then (*) has a solution
z(t) satisfying 2’ /z < a [or a solution z(f) satisfying a < 2’/z] for { near w; and (iii)
if a < B are constants, Py(f, @) and P, (t, #) do not change signs, neither y = ¢* nor
y = Pt are solutions of (%) for ¢ near w, and P, (, a) P, (%, B) < O, then (x) has a solution
y(¢) satisfying a < y'/y < B for ¢ near w.

1. Introduction. ‘We shall assume that coefficients in the linear
differential equation below, for example, in

(L1) Py, D)y = D"y + ) a,(t) D*y =0, where Dy = dy/dt =¥/,
k=0

are real-valued and continuous on a specified interval I. Equation (1.1)
is said to be disconjugate on I if every solution (= 0) has at most n —1
zeros on I (counting multiplicities).

Section 3 deals with the derivatives of solutions of a disconjugate
differential equation on 0 <? < w. The main results of the paper are
given in Section 4. Theorem 4.1 implies that if (1.1) is disconjugate on
0 <t < w,niseven,and ais a constant satisfying P, (¢, a) = " +Z' a (1) a*
<0 (e.g., a =0 and a,(t) < 0), then (1.1) has a pair of solutions x(?),
z(t) satisfying 2’ /o < a < 2’ [z for t near w. While if n is odd and P, (¢, a) > 0
[or P,(t, a) < 0], then (1.1) has a solution «(t) satisfying 2'/z < a [or
a solution z(?) satisfying a < 2’/2] for ¢ near w. Also, Theorem 4.2 implies
that if there exist constants a < g such that P,(¢, a), P,(f, §) do not
change signs, neither y = ¢* nor y = ¢* is a solution of (1.1) for ¢ near w,
and P,(t, a)P,t, ) < 0, then (1.1) has a solution y(?) satistyinga < y'Jy < f

* The study was supported by the National Science Foundation Grant
No. GP-30483.
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for ¢ near w. For these particular cases of Theorems 4.1 and 4.2 when
n = 2, see Olech [7] who uses the method of Wazewski [10}.

Our methods depend on the paper Pélya [8] and on results obtained
by Hartman [3], [4] and by Levin [6]; cf. Coppel [1]. (Page references
to Levin [6] refer to the English translation.)

An Appendix deals with counter examples for Theorem 4.1 when
n = 3 and the assumption that (1.1) is disconjugate is omitted.

2. Notation and preliminaries. In this section, we introduce some
notation and recall some basic facts about solutions of disconjugate
.equations.

We denote the Wronskian determinant of the functions u,, ..., %,
by W (uy, ..., %) = det (D" 'u,),4,j =1,..., k. An ordered set of functions
(Uyy .., Uy) of class O™ ! on an interval is said to satisfy (Pélya’s [8])
condition W there if the Wronskians %, = W (u,), W(uy, %)y ..., W(uy,
..+y U,) do not vanish.

Remark 1. If the coefficients of (1.1) are continuous on I: 0 <t < w
(< o0), then a necessary (Pélya [8]) and a sufficient (Sherman [9]; ef. [3],
p. 313) condition for (1.1) to be disconjugate on I is that there exists
an ordered set of solutions wu,(t), ..., %,_;(?) satisfying condition W on
0 <t < w. In this case, if ¥y = {,(¢) is a solution of (1.1) satisfying

(21) g =...=D"F 1 =0, (=L)D" *, >0 att=y,

0 <y < w, then ({,, ..., {,_,) satisfies condition W on y <t < w, in fact,
Wiy -y &) >0 for y <t< w, L< k< n; Pélya [8]. They also satisfy
W(L1s ey ;,_1_) >0at t =y.

Remark 2. If (1.1) is disconjugate on 0 <t < w, then it has solutions
Uy (t)y - ooy U,_y(t) with the property that if y(¢) is any solution linearly
independent of them, then

(2.2) YU, =o0(y) and wu, =o0(up,,) ast—oow,k=1,...,0—1;

furthermore, if (2.2) holds for an ordered set of solutions, then (u,, ...
eevy Up_1, Y) satisfies condition W on 0 < ¢ < w; Theorem 7.2,, p. 331-334
or Appendix A, p. 352-358, in [3). In this case, u, is called a first principal
solution of (1.1) (at ¢ = w), 4, a second principal solution, etc. Here, in
contrast to [3], we also call ¥y an n-th principal solution. Clearly, u, is
unique up to constant factor. Also, %, # 0 for 0 <t < w; Theorem
7.1,, [3], p. 329-330.

Remark 3. If (1.1) is disconjugate on 0 << i< w and if 0 <y < o,
then there exists an ordered set of principal solutions %, ..., 5, satisfying

(2.3) Me=... =Dy, =0, Dlpn>0 att=2y
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(hence W (#z,...,%,) >0 at t = ), and the conditions

:

(2.4) W Nigasoeesy) >0 o0 y<i<o,1<i<)<n;

Theorem 7.2,, [3]. In particular, n; >0 on y <t < w, by the case ¢ = j.
Note that %,, ..., n, span the linear manifold of solutions of (1.1) vanish-
ing at t =y (since n; >0 on 0 <?< w). The solutions #,,...,n, are
called special principal solutions (depending on y, 0 < y < w).

3. First derivatives of solutions. In this section, we state results
about solutions of (1.1) and their first derivatives. Generally, we shall
make the following assumption. _

HypoTHESIS (H). (1.1) is disconjugate on 0 <t << w. The function
w(t)e C"[0, w) is such that P,(t, D)w does not change signs (e.g., w =1
and a,(t) does mot change signs).

THEOREM 3.1. Assume hypothesis (H), 0 <j < n, and let uy, ...,
be j linearly independent solutions of (1.1). (i) Then

(3.1) Wty ..., u;, w) does not change signs for t near o
and if W(uy, ..., %, w) # 0 for t near w, then
(3.2)  W(tyy ooy U, Y)W (ty, ..., u;, w) ts monotone for t near

for any solution y(t) of (1.1).

(ii) If W(uy, ..., %y, w) # O for t near w, then there exists a T,0 < T < w,
such that w,, ..., u;, w are solutions of a non-singular, disconjugate (j+1)-st
order linear differential equation on T <t < w. Hence (Levin, [6], p. 93)
limu, /w exists (possibly 4-o00) as t - oo for L <k < j.

(i) If W(uy, ..., u;, w) #0 for t near w, then there exists a T,
T<T < w, such that (u;jw), ..., (u;/w) are solutions of a j-th order,
non-singular, disconjugate linear differential equation on T' <t< . In
particular, lim (u; /w)’ [(w, /w) exists (possibly +o0) as t - w for 1 < i, k < j.

In (3.1), we make the convention W(u,,...,u;,w) =w if j =0.
The proof of Theorem 3.1 gives

COROLLARY 3.1. Assume hypothesis (H) and P,(t, D)w = 0 for
near w. Lot 1 <j<mn and uy, ..., u; be linearly independent solutions of
(1.1). Then W(uy, ..., u;, w) # O for t near o (so that (ii) and (iii) in Theorem
3.1 are valid). .

In some cases, we can determine the values of T, T' in Theorem 3.1.
This is the situation in the following assertions.

THEOREM 3.2. Assume hypothesis (H) and

(3.3) P,(t, D)w #0 on 0 <t< w.
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Then the (n -+ 1)-dimensional linear manifold of functions spanned by w(t)
and the solutions of (1.1) is disconjugate on 0 <t < w, t.e., a function (#Z 0)
in this manifold has at most n zeros (counting multiplicities) on 0 <t < w.

Remark 1. Condition (3.3) cannot be omitted. For if n = 1, P,(f, D)y
=y —a(t)y and w > 0 is a solution of w'—b(t)w = 0, so that P,({, D)w
=(b—a)w>=0if b(t)~a(t) > 0. But if b(t,) —a(t,) = 0 and y(¢,) = w(t,),
then y(¢)—w(t) has two zeros at t =¢,.

Theorem 3.2 has the following consequence.

COROLLARY 3.2. Assume the conditions of Theorem 3.2 and w > 0.
Let d, 0 < d<<n, be the dimension of the linear manifold of solutions y(t)
of (1.1) satisfying y(t) = O(w(t)) as t —>w. Let (u,, ..., u,) be a set of n
principal solutions.

(i) If d<1, then ((ujjw), ..., (u,/w)) satisfies condition W on
0 < t< w; so that if y(t) % 0 is a solution of (1.1), then (y/w) has at most
n—1 zeros (counting multiplicities) on 0 <1t < w.

(i) If d = 2 and u,, u, are positive on y < t < w, then (u,jw), (uy/w)
have at most one (necessarily simple) zero on y < t < w. If either (u,/w) 0
or (uyfw) # 0ony < T <t< w, then correspondingly, ((u,/w), ..., (u,/w))
or ((ugfw)', (uy/w)’y (ug/w), ..., (u,/w)) satisfies condition W on T' < t < w.

Despite the Remark 1 following Theorem 3.2, we can obtain some
analogous results if condition (3.3) is replaced by

(3.4) w>0 and (-1)""'P(t, D)w >0,
and (%, ...,u,) is replaced by (%,, ..., %,_,).
THEOREM 3.3. Assume hypothesis (H); 0 <y < w; and (3.4). Let
Uyy ...y U, be solutions of (1.1) satisfying
(3.5) Wty ooy tt) >0 for y<t<ow, 1<k<n,

and the inequality in
(3.6) W(“l; ceey Up_1y ( —1)n—l'w) = w"W((ul/w)', seey (un—llw)l) >0

att =7y (eg., let 0<y<ow and (Uy,...,%,_,) = (9gy...,7,) be the set
of the last n —1 special principal solutions). Then (3.6) holds for y <1 < w,
so that Uy, ..., U, ,, w are solutions of a non-singular, disconjugate n-th
order linear differential equation on vy <t < o (ond (uy/w), ..., (Uy_ /W)

are linearly independent solutions of a non-singular (n —1)-st order equation,
say,

n—2

(3.7) Qur(ty D)y = D'y + ) by(t) D*y =0
k=0

om y<t<w).
We can obtain here an analogue of Corollary 3.2.



Disconjugate differential equations 177

COROLLARY 3.3. Assume the conditions of Theorem 3.3 and let (n,, %,,

.y Up_y) be a set of n principal solutions of (1.1). Let d, 0 < d < n, be the

d@mmszon of the linear manifold of solutions y(t) of (1.1) satisfying y(t)
= O(w(l)) as t > w. ‘

i) If <2, then ((u,/w),..., (un_I/w)') satisfies condition W on
y<t<w and so (3.7) is disconjugate on y <t < w.

(ii) If d = 3 and u,, u, are positive on y < 1 < w, then (uy/w)’, (uq/w)’
have at most one (necessarily simple) zero on y < t < w. If either (uy/w) # 0
or (us/w) #0 on (y<) T'<t< w, then, correspondingly, ((us/w),

coy (Up_y fw)) o ((wg/w)'y (Ug/w)'y (Us/w)', ..., (thy_, [w)') satisfies condition W
on T' <t< w, so that (3.7) is disconjugate on T' <t < .

Remark 2. If 0<y<ow and (%;y...,%,_ ;) = (7ay...,7,), then
case (i) implies that if y(f) = 0 is a solution of (1.1) vanishing at ¢ = y,
then (y/w) has at most n —2 zeros (counting multiplicities) on y <t < w.

Theorem 3.1 and Corollary 3.1 will be proved in Section 5; Theorem

3.2 and Corollary 3.2 in Section 6; Theorem 3.3 and Corollary 3.3 in
Section 7.

4. Logarithmic derivatives. The main results of this paper are con-
tained in the next two theorems.
THEOREM 4.1. Assume hypothesis (H) and w(t) > 0.

1) If n is even and P, (t, D)w < 0, then (1.1) has a pair of solutions
% (1), 2(t) satisfying, for t near w,

(4.1) x>0, 2>0, jlr<sw/w<z/z.
In particular, if w(t) = e and P,(t, a) < 0, where

n—1
(4.2) Pty a) = "+ D a(t)a

k=0

(e.g., a = 0 and ay(t) < 0), then (4.1) becomes
(4.3) x>0, 2>0, zlr<<a<?/z.

(i1) If m is odd and P,(t, D)w > 0 [or P,(t, D)w < 0], then (1.1) has
a solution x(t) [or 2(1)] satisfying, for t near w, '
(4.4) x>0, zleswiw [or 2>0, wlw<z/[z].

In particular, if w(t) = e* and P,(t,a)> 0 [or P,(t, a) < 0] (e.g.,
a =0 and ay(t) >0 [or a,(t) < 0]), then (4.4) becomes
(4.5) x>0, zjz<La [or 2>0, a<?/z].

(iii) In (1) and (ii), the solution x(t) [or 2(t)] can be chosen to be a first
principal solution [or an n-th principal solution] of (1.1). Furthermore,

strict inequalities hold in (4.1) and (4.4) if w(t) s 'n,ot a solution of (1.1)
for t near .
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This result generalizes a part of Theorem 14.1,, [4], p. 440, but its
proof depends on that theorem. The next theorem is also related to Theorem
14.1,,.

THEOREM 4.2. Assume that (1.1) is disconjugate on 0 <t < . Let
w,, Wy be functions of class C"[0, w) satisfying

(4.6) ’w1>0, ’w2>0, ’w;/w1< w;IW2, w1/w2 —)0 as t—)'w,

(4.7) P,(t, D)w, 0, P,(t,Dyw, =0 for t near o,
and, for a choice of ¢ = +1,
(4.8) eP,(t, D)w, >0 and eP,(t, D)w,<0.

Then (1.1) has a solution satisfying
(4.9) wijw, < Y'ly < wyfw, for t near w.

For example, if a < B, P,(t, a) &£ 0and P, (¢, 8) # O fortnear w,eP,(l,a) = 0
‘and eP,(l, ) < 0, then (4.9) becomes

(4.10) a<<y'ly<BpB.
Theorem 4.1 will be proved in Section 8 and Theorem 4.2 in Section 9.

5. Proof of Theorem 3.1. We first verify the following:

LeMmA 5.1. Let (1.1) be disconjugate on 0 <t< w. Let 1<k<n
and Uy, ..., U linearly independent solutions of (1.1). Then W (4, ..., %) %= 0
Jor t near w.

Proof. The lemma is correet if » = 2. Assume its validity for equa-
tions of order n—1 (> 2). Let ¥y = n,(f) be a first principal solution for
(1.1). Then there is a non-singular disconjugate equation of order n—1
on 0 <! < w such that z(t) is a solution if and only if 2(f) = W(n,, ¥)
for some solution ¥ (¢) of (1.1); Theorem 7.2, (iv), [3], p. 332. If 9y, %y, ..., Uy
are linearly independent solutions of (1.1), then z; = W (%, u;), 1 < j <k,
are linearly independent and, by the induction hypothesis, W(z,, ..., 2;) # 0
for ¢ near w, that is,

(3.1)  W(zyy...y2) =07 W(ny, %y, ...,%;) 0 for ¢t near w;
cf. [3], p. 310. By a standard formula (cf. [3], p. 315),
(5.2) [W(ula°°-1uj)/W("717uly--wuj—l)]’
= W(uy, ..., ;1) W(ny, %y ...y uj)/Wz(??n Uyy vy Uj_y)-
An induction on j =2,..., k shows that the right-hand side is not 0
for ¢ near w, and so W(u,, ..., u;) % 0 for ¢ near .

This completes the proof if #,, u,, ..., u, are linearly independent.
But if they are linearly dependent, then W (wu,, ..., ;) is, up to a constant
W(ny, 01y ...y ¥4_,), Where 7y, v, ...,9,_, are linearly independent, and
the desired results follows at once from the induction hypothesis; cf. (5.1).
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Proof of Theorem 3.1. On (3.1) in (i). Choose u;, ,, ..., %, such
that #,,..., %, aTre linearly independent solutions of (1.1). Then, by
Lemma 5.1, there exists a T, 0 < T < o, such that (u,, ..., %, ,) satisfies
condition W on 7' <1t < w.

From the formula for the derivative of the ratio of two Wronskians,

{5.3) [W(ugy ..., Uy, W)Wy, ..., Uj uj+1)]’
= Wty ooy ) Wty ooy Uiy, W) W3(Ug, .0y %y40).

Since P,(t, D)w = W (uy,y ...y ty, w)/W(ty,...,%,), it follows that if
j = n—1, then the right-hand side of (5.3) does not change signs for
T <t < w. This proves (3.1) for j = n—1 and (3.1) follows for 0 < j < n
by an induction on decreasing j.

On (3.2) in (i). If u,, ..., w; and y are linearly dependent, then (3.2)
is trivial. If u,, ..., 4; and y are linearly independent, then it can be sup-
posed that ¥ = u;,; in the proof above. In this case, (3.2) follows from
(5.3).

On (ii). By Lemma 5.1, there exists a 7, 0 < T < w, such that
(tyy ..., u;, w) satisfies condition W on T'<t < w.

On (iii). By a similar argument, there exists a 7", 0 < T" < w, such
that W(uy, ..., %, w) #0 for T'<t<w, 0<k<j Hence ((u,/w),...
voey (5 /w)") satisfies condition W on I” <t < w; cf. the identity in (3.6).

6. Proof of Theorem 3.2. Let (u,, ..., %,) be solutions of (1.1) satis-
fying condition W on 0 < ¢ < w. Then (3.3) implies that (u,,..., u,, w)
satisfies condition W on 0 < { < w. If the functions u,,...,u,, are of
class C"t'[0, w), then they satisfy a non-singular, disconjugate differ-
ential equation of order n+1 on 0 < ¢ < o, and the result follows. Actually,
Pélya’s proof [7] does not require this extra smoothness; cf., e.g., Corollary
A2, [3], p- 354. (One can avoid this technical difficulty by a proof by
induction on u.)

Proof of Corollary 3.2. After the change of variables ¥y —y/w, we
can suppose that w(?) = 1. Also, we suppose that u; >0 for ¢ near w.
We shall use the notion of principal solution (at # = w) of the linear family
of functions spanned by u,,...,%,,1. If d =0, then (1, %,,...,u,) is
an ordered set of principal solutions. If d > 1, then #; >0 as { > o for
1<j<d, ug—>c with 0<<e¢ < oo, and, if n > d+1, uz,, = oo. Thus, in
the case d =1, (u,—e¢, 1, %sy...,u%, ;) i8 an ordered set of principal
solutions. For d > 2, we have a set of principal solutions (&, ..., &, 1,
Ugi1y -++y Up_y), Where §; is a linear combination of u,, ..., uz_, and ug—c.

On (i). According as d = 0 or d = 1, the sets of functions (1, %y, ..., %g)
or (u,—¢ 1, us,...,u, ;) satisfy condition W on 0 <t < w. Hence,
(Uyy eevy 4y, ;) satisfy condition W on 0 < t < .
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On (ii). When d = 2, we have the ordered set of principal solutions
(E1y Epy 1y Ugy ooy U,_,). Hence W (&, &5,1) #0 on 0 <t < w. It follows
that W(u,, u,,1) = 0 and hence W(ui, u) #0 on 0 <t< w.

But u, >0, u, >0, W(u,, u,) >0, W(u,, u;) # 0 imply that u;, u,
each have at most one (necessarily simple) zero on y < t < w. For example,
if wuy(ty) = 0, then wu,(t,) <0, and u, (t,) # 0 has the opposite sign to
W (u;, u5). Thus u, cannot have two zeros on y < ¢ < w.

The remainder of assertion (ii) is clear, for either u; # 0 or u, # 0,
W (uy, us) # 0, while W (&, &,,1, ug, ..., u;) # 0 implies +W(uj, ..., u;)
=W(Uyy ..., %;,1) #0 on IT' < t < w.

7. Proof of Theorem 3.3. After the change of variables y—y/w, we
can suppose w = 1. Thus (3.4) means that (—1)""' ay(f) = 0. If Z(¢) is
defined to be

(7.1) Z(t) = W(’“fly cony Up_ 1y (_l)n—l) = W(uyy ..., 4,_1),

then Z'(t)4a,_,(8)Z = (—1)""'a,(t) W(uy, ..., 4,_,) by (1.1). Thus
Z' +a, ,Z>0, and so Z(y)>0 implies that Z(t) >0 for y<it< w.

Hence, %,,..., %,_,, 1 are solutions of a non-singular n-th order equation
on y <t < o,
(7.2) D'y —(Z'|Z)D" 'y +... =0,

which is disconjugate since the solutions #,, ..., %,_,, 1 satisfy condition W
on y <t < w. This gives the theorem. :

Proof of Corollary 3.3. This is similar to the proof of Corollary 3.2
and will be omitted.

8. Proof of Theorem 4.1. We begin with a collection of simple facts
which follow from Theorems 3.1, 3.3 and their corollaries.
PROPOSITION 8.1. Assume hypothesis (H) of Section 3, and w(t) = 1,
80 that a4(t) does not change signs. Let d be the dimension of the linear mamni-
fold of bounded solutions of (1.1). Let 0 < y < w and 7, ..., n, be special
principal solutions of (1.1), so that the Wronskian inequalities of (2.4) hold.
(1) Then, for t near o,

0<ny/ne<...<mpfn. if d=0,
MM < eoe < Gp1[u_1 < 0 and either  +£3,/n,>0 if d =n.

(ii) If d < m, then 7,0, n;— oc as t—ow for 1 < j < d < k < n and, fort
near ®y 0 < ngy1 /Mgy < oo < NnfNn- Als0, if d > 2, mufny < ... < Mg_y/Ma-y
< 0 and either ny_,/ng_, < Na/ma < 0 or ny_1/na_y < 0 < nz/ng for t near w;
while if d = 2, either n,/n, < n2/n. < 0 or 5, > 0.

Proof of Theorem 4.1(i). The solution x(t). It is sufficient to suppose
that w(f) =1 and that (—1)""'a,(f) = —a,(t)=0 for 0<t< w. We



Disconjugate differential equations 181

first prove the existence of a solution z(f) satisfying (4.1). Let %y, ..., 7,
be special principal solutions belonging to some y, 0 < y < w. By the last
proposition, it suffices to consider the cases d <1 and d = 2.

If d<1, then (uy,...,%,_;) = (1,12, ...y7,_;) are the first n —1
principal solutions of (7.2) and, by (2.4) and Corollary 3.3(i), satisfy
Wty ..oyy) >0 on y<t<ow for 1<i<<j<n; cf. Proposition 2.2,
‘[3], p- 311. If ¢ > 0, the existence of the solution z(t) satisfying = >0
and o'/ < u,/u, = 0 for y+¢e <t < o follows from Theorem 14.1,, [4],
p. 440, since (—1)""'P,(t, D)u, = (—1)""'a, >0 and P,(t, D)u; = 0 for
2<j< .

Consider the case d = 2. Since (7,,...,7,) satisfies condition W
on y <t < w, by Corollary 3.3, it follows that #, # 0 on y <t < w. But
75(y) > 0 by (2.3), so we have 5, >0 for y <t < w. We can assume that
7,(o0) = 1, for otherwise n, can be multiplied by a suitable positive
constant. Then (1 —%,, n,,...,7,) are principal solutions of (7.2) and
hence satisfy condition W on y <t< w. By (2.4) and Corollary 3.3,
(Uyy eeey Up_1) = (L =172, N2y ovvy Ny_y) SALISTY W(n,..., ) >00ny <t <w
for 1 <4< j < m, while (—1)""*P, (¢, D)u; = (—1)""'ay > 0and P, (¢, D)u;
=0 for 2 <j < n. Hence, Theorem 14.1,, [4], implies that if £ >0,
then (1.1) has a solution z(t) satisfying « > 0, «'jz < u/u, = — 5, /(1 —n,)
<0 for y+e<t < .

On (i). The solution z(t). We mow verify the existence of a solution
z(t) satisfying (4.1). In view of Proposition 8.1, it suffices to consider
the case d = n (so that ;—0 as t—w for 1 < j < #) and %, < 0 for ¢ near w.
Since #g, ..., 7, are solutions of a disconjugate differential equation (3.7)
for t near w, limy;/n;,, exists (possibly 4 o) as i—>w for 2 <j < n. From
7,0 and n;/n;,,—~0 for 1< j < n, it follows that z/y,,,—0 for 2 <j
<n—2.

Case 1. 9,_,/9,—~0 as t—w. (This holds, for example, if 7,0 as
t—>w.) In this case, —#,,..., —7, are (positive) principal solutions of
(3.7) for ¢ near » and so, W(—mn,,..., —u;) >0 for 2 <j < n; Theorem
7.2,(iii), [3], p. 332. Hence W(—mn;,..., —n;) >0 for ¢ near w, 2 <14
<j < mn; [6], p. 63-64; cf. Lemma 5.1 and its proof. It follows from (2.4)
that if (g, ..., %, 1) = (N2y -y Np_1, 1), then W(u;, ..., u;) >0 for ¢
near o, 1<i<j<mn, whie P,(}, D)u; =0 for 1<j<n—1 and
(=1 'P,(t, D)u, , = — ay(t) > 0. Thus, Theorem 14.1,, [4], implies
the existence of a solution z(t) of (1.1) satisfying 2 >0, 0 = u,_,/u, ,
< 2’ [z for t near w.

Case 2.limy, = ¢ >0andlimy, /7, =0, 0<oc< co.Let0 <1< 0
and put 2(?) = ,(t) —n,_,(t). Then 2 —>7¢ >0, t > w, so that z > 0 for ¢
neal . Also 2 =y, —7,; = ony—1,_+(0—7)(—n,) ~(a—7)(—1,)
as t — w, so that 2' > 0 for ¢ near w.
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Case 3. limy, =¢>0 and limy,_,/q, = co. Put 2(t) = n,(t)—
—p_1(t). Then z—¢ and 2' = 9, —n,_,~—n,_, as { >, so that z > 0,
2’ >0 for ¢t near o. ‘

Proof of Theorem 4.1(ii). The existence of x(¢) in the case a,(t) > 0
and of z(?) in the case of ay(f) < 0 is identical with the corresponding
proofs in case (i), for (—1)""'P,(t, D)1 = a,(t) and (—1)"*""'P,(t, D)1
= —ay(t) when n is odd.

Proof of Theorem 4.1(iii). First, it is clear that x(¢) can be taken
to be #,(t) if d >2,0ord =1, or d = 2 and 7, < 0 for ¢ near w. Consider
the remaining case, d = 2 and %, > 0 for ¢ near . Since x(t) is bounded,
it is of the form = = ¢,9,-+¢;7;, Where ¢, # 0 and ¢, > 0 since =z >0
for t near w. Thus 0> & = ¢; 9+ ¢€y9y = ¢,9,. Thus 7; does not change
signs for ¢ near w. But since 0 < 7,0 as t—w, it follows that #, < 0 and
so, x can be taken to be 7#,.

The proof that z(f) can be taken to be an n-th principal solution is
simple in view of the proofs of parts (i) and (ii).

If P,(t, D)1 = a,(t) £ 0 for ¢t near w, then W(x, 1) # 0 for ¢t near
by Corollary 3.1. This completes the proof of (iii).

9. Proof of Theorem 4.2. Let 0 <y < w and 7, ...,7,_, the first
n —1 special principal solutions of (1.1). By Theorem 4.1, there is a posi-
tive n-th principal solution 7, satisfying 7, /n, > wy/w, > wijw,; or 7, /1,
> w)/w, for ¢ near w according as ¢ =1 or ¢ = —1, while 7#,/5, < w;/w,
< Wy [w, OF 71/, < w,/w, for t near w accordingas e = (—1)"lore = (—1)".
Also, by Corollary 3.1, W(%;, w;) # 0 for ¢t near v, L <j<nmand ¢ =1, 2.

Thus there exist integers J and K, 0 <J, K < n, such that, for ¢
near ., (n;/w,)’ < 0 for j < J and (»;/w,)’ > 0 for j > J, while (n;/w,) < 0
for j < K and (n;/w,) >0 for j > K. Hence J < K by (4.6).

If J< K and J <j< K, then y(t) = 7,;(f) satisfies the conclusion
of the theorem. Suppose therefore that J = K, so that 0 <J =K < n
by the remarks above. '

We can suppose that w, = 1 and write w for w,. Hence

(9.1) eao(t) = eP,(t, D)1 >0 and &P,(t, D)w < 0.

Thus, for ¢ near o,

(9.2) mim<-..<npny<0<w|w<n Mg <.ooo </

In what follows, we shall use the following consequence of Lemma 2.6,
[6], p. 63-64.

LeEMMA 9.1 (Levin). Assume hypothesis (H) and w > 0. Suppose that
(1.1) has principal solutions z,(t), ..., ©,(t) such that z; = o(w), w = 0(x; ;)
as t — o for some integer J, 0 < J < n (where we omit x; = o(w) or w = 0(xy,,)
if J =0 or J =n). Then (—1)""YP,(t, D)w > 0.
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Since w — oo as t > w, it follows from (4.7), (9.1) and (9.2) that not
both of the relations #; = 0(1) and w = o(%n,;,,) can hold as { — .

Case 1. 9, = o(1), w # o(ny,,). Then ¢ = (—1)"7. Also limy,,,/w
exists and is a positive (finite) number which we can suppose is 1. If we
consider (9yy ...y N7y W—Ng51y Nyg1y -+ M)y 6 follows that n; # o(w—n;,,)
as t — o, for otherwise —e = (—1)""7. Let ¢ = lim(w —7,,,)/n;, so that
0 < ¢ < oo. Since the functions 5, /w, (w—7n;,,)/w tend to 0 and the ratio
of their derivatives have limits (by Theorem 3.1), it follows that
(= ny1/w) [(ns/w) —>c as t - .

Since (ny/w) < 0, (—ns4,/w) < 0 for ¢ near w, we have that (1+¢)
(ny]w) < (—ng41/w) < 0 for t near w. Thus [y(t)/w(t)] < 0 for ¢ near
fy=nnt+td+e)n,.

In view of [ (—#%j)dt< oo and [ 7;,,dt = oo and the fact that
7ny/m741 has a limit (possibly —oo) as ¢ —w, it follows that z)/n;,.,—>0
as t —>o. Thus ¥ = 7, ,+(1+¢)n, >0 for ¢ near w. Consequently, y > 0
and 0 < ¥'/y < w'jw for ¢t near w. This proves the case under consideration.

Case 2. 9; #0(1), w = o(nyy1)- Then e = (—=1)""7"1. Also limyn,
exigts and is a positive number which we can suppose is 1. If we consider
(M1y +++y My—1y My —1, Ngy -+ oy M), it follows that J > 1 and 5,_, # o(n; —1),
for otherwise &P,(f, D)[n;—1]1< 0 implies that —e = (—1)""/~! Let
¢ = lim(n;—1)/n;_,, so that 0 < ¢ < co. Arguing as above with the use
of Theorem 3.1, we see that %,/n,_,—c¢ and that y =, —(1+¢)n;_,
satisfies ¥ > 0,94 >0 for ¢ near w. Since 0 < y/w -0 as t—>w and
(y/w)’ # 0 for ¢t near w, we have (y/w)’ < 0 for ¢ near w. Thus 0 < y'/y
< w'|/w for ¢ near w. This proves the case under consideration.

Case 3. n; #o0(1), w 5 o(ny,,). We can suppose that 7,—>1 and
Nye1/w =1 as t > w. On the one hand, if %, # o(w—7,,,), then the proof
can be completed as in Case 1 or if J >1 and 7,;_; # o(n;—1), then the
proof can be completed as in Case 2. On the other hand, one of these two
alternatives must hold, for otherwise —& = (—1)""Yand —e = (—1)""7~1,
This completes the proof of Theorem 4.2.

Appendix. There are a number of results of the following type dealing
with third order equations:

(*) In the differential equation

1) Py(t, D) =y"" +pt)y" +q@)y +r(t)y =0,
let p, ¢, 7e C°[0, o0) and let
(2) r(t) = 0.

In addition, assume certain other conditions, say (C). Then (1) has
a solution y = y(¢) satisfying
(3) y>0, y' <0 for large ¢.
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Examples of suitable conditions (C) are as follows: (a) (1) is discon-
jugate on [0, oo); cf: Theorem 4.1 above. (b) ¢(¢) < 0 or, more generally,
¥y +p)y +q(t)y = 0 is disconjugate on [0, o); cf. [5]. (¢) A generali-
zation of (b) occurs in [3], p. 358-361. (d) See also [A2] which deals with
a special case of (1), namely, the Appell equation,

(4) w'"' +4q(H)w' +2¢ (Hw = 0,

in which ge C'[0, c0) and for which the general solution is w = ¢, u2(t) +
+ ¢, v%(t) + cyu(t)v(t), where u(t), v(t) are linearly independent solutions of

(5) W g(t)u = 0.

Here (4) has a solution w > 0, w’ < 0 for ¢ > 0 if ge C*[0, ), ¢ > 0,
¢ >0 and ¢’ <0; [A2], p. 182-183.

These results suggest the question of the validity of (x) if the extra
assumptions (C) are omitted. As we show by counter-examples, the answer
is in the negative.

PrOPOSITION. Let p, q, re C°[0, o) and r > 0. Then it is possible (i)
that, for large t, (1) has positive solutions, but no monotone solution (= 0)
and (ii) that every solution y(t) of (1) has infinitely many zeros.

The result (ii) gives another counter-example to a question raised
by Mammana [A3] as to whether a real operator P,(¢, D) always has
a real factorization P, = P,P,; cf. Ascoli [Al] and Sansone [A5].

Proof (i). Let ¢(t) > 0 be a continuous non-decreasing function for
t > 0 satisfying ¢ — oo as t — oo. Then if () is a solution of (5), u%+ u'2/q
is non-increasing and there is at least one solution u(¢) % 0 such that
lim(u%+u'2/q) = 0 as t — co; Milloux [A4], ¢f. [2], p. 510. For a suitable
choice of such a ¢, (5) has a solution # = v(¢) such that lim(v2+'2/q) > 0;
Milloux [A4]. In Milloux’s example, ¢ is a step-function but it can be
supposed that ¢ is smooth, for otherwise it can be replaced by a smooth ¢,
with

[ 14(8)— qo(s)| ds
[1

small at oo; cf., e.g., [A6] or [2], p. 370. Thus, the corresponding Appell
equation (4), where ¢’ > 0, has a positive solution w = %%+ 9% but no
solution w = ¢,u%+¢,v24c,uv £ 0 is positive and monotone.

Proof (ii). Let py(f), go(t) be step-functions defined for ¢ > 0 by

Po(t) =2n  and g(t) =1+n® on [2nx,2(n+1)7)

for n =0,1,...
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Then the homogeneous equation
W’ —Po(t) ' + go(t)u = 0
has the linearly independent C'[0, co) solutions
(6) uo(t) = e~ "tV M cos (¢ + p,)/cosy, on [2nm, 2(n+1)w),
(7) vy(t) = e "V eMsint  on [2nw, 2(n+1)7),

where
0y, <=w/2, tany, =n, so that y,>nr/2,

as n —oo. The solutions (68), (7), satisfy u,(¢) = 0 and v,(t) = 0 for ¢ =2nx
and n = 0,1, ...
The inhomogeneous equation
W’ —po(t)w' +go(t)w =1
has the C'[0, co) solution

n—1

wo(t) = (L+n7)7 = [(L+0) 7+ 31 4] 67" 6" c05 (1 + yp) [e0574,

k=1
on [2nw, 2(n+1)x) for n = 0,1, ..., where
vi = (L4 K) 71 (& —1) e~ -0m,
Note that, as n — oo,

w°(2nn) = - en(ﬁ+l)ﬁ 2 Ak—)' — oo,
k=1l

n—1
wo(2nm + 1) = (1 +'n,2)"1(1—|—c3"”‘)+4:"2"211 A,—>oco.
k=1

Also, if we put

=]

co=2}~ka C’n=27~ka

=1 k=n

then o, > 4, gives,
Wo(2n7) + Coup(2nm) = """ g, > (14 n?) 7! ("™ — 1) "™ —> o0,
Wo (207 + 7t) + ot (20w + 7) = (1 +02) YL +€"F) — " g, 5> — o0,

&8 n—o0.

Thus the three functions u,(t), v4(t), we(t) are linearly independent
and every linear combination e¢,uy(t)+ c,04(2) +cswe(t) has arbitrarily
large zeros.

7 — Annales Polonici Mathematici t. 29. 2.
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Therefore, there exist C'[0, co) functions p(f) and ¢(f), which are
‘“‘near” to po(t) and g¢(t), such that ¢(¢) is increasing and

(8) w' —p)u +q@)z =0
has a pair of solutions «(f), v(f) and
(9) w' —p)w +qt)w =1

has a solution w(t) with the properties that u(¢), v(f), w(t) are linearly
independent and every linear combination has arbitrarily large zeros.
Since u(?), v(f), w(t) are solutions of the third order equation

g/”’—p(t)y”+ [g(t)—2" )]y + 4 (H)y =0,

obtained by differentiating (9), and since ¢’'(¢) > 0, assertion (ii) follows.

References

{11 W. A. Coppel, Disconjugacy, lecture notes in mathematics, No. 220, Springer
(1971).
(2] P. Hartman, Ordinary differential equations, Wiley, New York 1964.
[3] — Principal solutions of disconjugate n-th order linear differential equations,
Amer. J. Math. 91 (1969), p. 306-362.
[4] — Corrigendum and addendwm: principal solutions of disconjugate n-th order
linear differential equations, ibidem 93 (1971), p. 439-451.
[6] — and A, Wintner, Linear differential and difference equations with monotone
coefficients, ibidem 75 (1953), p. 731-743.
[6] A. Yu. Levin, Non-oscillation of solutions of the equation z(™ +p, (t)a*~D ... =0,
Uspechi Mat. Nauk 24 (1969), No. 2 (1946), p. 43-96; Russian Math. Surveys
24 (1969), p. 43-99.
[7]1 C. Olech, Asymplotic behavior of solutions of second order differential equations,
Bull. Acad. Polon. Sci. (Ser. sci. math. astr. phys.) 7 (1959), p. 319-326.
(8] G. P6lya, On the mean value theorem corresponding o a given linear homogeneous
differential equation, Trans. Amer. Math. Soc. 24 (1922), p. 312-324.
[9] T. Sherman, Properties of solutions of n-th order linear differential equations,
Pacific J. Math. 15 (1965), p. 1045-1060.
[10] T. Wazewski, Sur un prinoipe topologique de Uexamen de l'allue asymptotique
des dntégrales des équations différenticlles ordinaires, Ann. Soc. Polon. Math.
20 (1947), p. 279-313. ’

References (Appendix)

[A1] G. Ascoli, Sulla decomposizione degli operatori lineari e sopra alcune questiont
geometriche che vi si connettono, Univ. Nac. Tucumién Revista A.1 (1940),
p. 189-215.

[A2] P. Hartman, On differential equations and the function J2 + K2, Amer. J. Math.
83 (1961), p. 154-188.



Disconjugate differential equations 187

[A3] G. Mammana, Decomposizione delle equazioni differenziali lineari omogenee
in prodotti di fattori simbolici e applicazioni relativo allo studio delle equazioni
differenziali, Math. Zeit. 33 (1933), p. 186-231.

[A4] H. Milloux, Sur I'équation differentielle z'' + A () = 0, Prace Mat. 41 (1934),
p- 39-53. ‘

[AB] G. Sansone, Studii sulle equazioni differenziali lineari omogenee di terzo ordine
nel campo reale, Univ. Nac. Tucumin Revista A.6 (1948), p. 195-2853.

[A6] A. Wintner, Asymplotic inlegrations of the adiabatic oscillator, Amer. J. Math.
69 (1947), p. 251-272.

THE JOHNS HOPKINS UNIVERSITY

Regu par la Rédaction le 22. 3. 1973



